
LECTURE 1: THE FIRST BETTI NUMBER OF A COMPACT
 
HYPERBOLIC MANIFOLD AND THE HODGE CONJECTURE FOR
 

COMPACT QUOTIENTS OF THE COMPLEX n BALL
 

JOHN MILLSON 

In 1976 in [10], I showed that for every n the standard arithmetic examples of com
pact hyperbolic n dimensional manifolds M had nonzero first Betti number by constructing 
nonseparating totally geodesic hypersurfaces inside them. Now, 36 years later, Nicolas 
Bergeron, Colette Moeglin and I can show, [2], that if n ~ 5 these totally-geodesic hy
persurfaces span the next-to-top homology of M. This is proved by combining three very 
different pieces of work. First, there is the work I did with Steve Kudla in the 1980's (see 
the reference [8] below) where we constructed closed one forms which are Poincare dual to 
the totally geodesic hypersurfaces using the Weil representation ( the "special theta lift"). 
Second, there is the work of Kudla and Rallis, see for example [9], and Ginzburg, Jiang and 
Soudry, see [5] on the Siegel-Weil formula. Third, there is the very deep work of Jim Arthur, 
see for example [1], on the stabilized trace formula. Our proof procedes by first proving that 
a first cohomology class that comes from any Weil representation construction (any theta 
lift) comes from the special theta lift of [8] and therefore is necessarily in the subspace of 
the first cohomology spanned by the Poincare duals of totally geodesic hypersurfaces. The 
last two pieces of work are then used to prove that all the first cohomology comes from 
some Weil representation construction (theta lift). 

There are corresponding results showing that the Poincare duals of certain totally ge
odesic cycles, which we will call "special cycles", span a definite part (a refined Hodge 
component) of the cohomology of the locally symmetric spaces of standard arithmetic type 
associated to the orthogonal groups O(p, q). The notion of "refined Hodge type" introduced 
by Chern in [4] is closely related to the classification by David Vogan and Gregg Zucker
man, see [11], of the irreducible unitary representations 7r with nonzero relative Lie algebra 
cohomology (the refined Hodge type corresponds to the minimal K-type of 7r). The notion 
of refined Hodge type and the work of [11] playa key role in our work. 

In very recent work ( in progess) Bergeron, Moeglin and I have applied analogous tech
niques to the standard arithmetic quotients M = f\X of of the symmetric spaces X associ
ated to the groups U(p, q). For the case in which the unitary group is U(n, 1) the associated 
symmetric space X is the complex n ball D n (complex hyperbolic space). We prove that, 
under the assumption k < n/3, the intersection H 2k (M, lQ) n Hk,k(M, q is spanned by the 
images in M of totally geodesic n - k-balls Dn

-
k c Dn (these are the "special cycles" for 

this case). Since these image cycles are carried by projective subvarieties, this proves the 
Hodge conjecture in these degrees for the standard arithmetic quotients of the ball. The 
structure of the proof is the same as for the orthogonal case; however, for Part 2 it was 
necessary to prove the analogue of [5] for the unitary groups and for Part 3 it was necessary 
to extend results of Arthur to the unitary groups. 

I will try to avoid technical details and explain the overall principles: the simple geometric 
idea behind my 1976 paper and the geometry behind the construction in [8] which uses the 
Weil representation to construct closed differential forms on the above manifolds which are 
Poincare dual to the geodesic cycles. 
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LECTURE 2: THE GENERALIZED TRIANGLE INEQUALITIES IN
 
SYMMETRIC SPACES AND EUCLIDEAN BUILDINGS WITH
 

APPLICATIONS TO ALGEBRA
 

In my second lecture, I will talk about results I proved with Bernhard Leeb and Misha 
Kapovich in a series of papers - see [KLMl], [KLM2] and [KLM3] about the triangle inequal
ities for higher rank symmetric spaces X = G/ K of noncompact type and their relations 
to the structure constants for the spherical Hecke algebra of G and the representation ring 
of the Langlands dual group GV. These results were complemented by the paper [KM2] 
which generalized the famous saturation theorem of Knutson and Tao for GL(n) to any 
simple reductive group G (except one needs the saturation factor kG, see below). For a 
good exposition of the background to this lecture see the expository article of Fulton [Fu] 
in the Bulletin of the AMS. 

The eigenvalues of a sum problem. In a rank one symmetric space of noncompact type 
X = G/K the only invariant (under isometry) of pairs of points x, y is the distance d(x, y) 
between them. In a symmetric space of rank k there are k real-valued invariants. The 
scalar-valued distance d(x, y) gets replaced by a cone-valued distance which assigns to a 
pair of points x, y E X a point d,6.(x, y) in the Weyl chamber ~, a k-dimensional cone in 
the Cartan subspace a = IRk. Given three points Ct, {3" E ~ one may ask for conditions 
on Ct, {3" that are necessary and sufficient in order that one can draw a geodesic triangle 
in X with side-lengths Ct, {3", precisely find three points x, y, Z E X so that d,6.(x, y) = 
Ct, d,6.(y, z) ={3, d,6.(z, x) =,. The answer is that there is a system of homogeneous linear 
inequalities determined by the Schubert calculus in the Grassmanians G/ P for P a maximal 
parabolic subgroup of G) that give these necesssary and sufficient conditions. For the case 
of G = GL(n, q the triangle inequalities specialize to the famous inequalities discovered by 
Klyachko [Klyl] which solve the following classical problem which dates back to Hermann 
Weyl (see [Fu] for the history) 

Problem. Given two Hermitian matrices A and B with eigenvalues >'1, ... , >'n and ILl, ... , ILn 
respectively what are the possible eigenvalues for the sum A + B. 

The inequalities of Klyachko are irredundant but for groups G other than G = GL(n, q 
the generalized triangle inequalities are highly redundant, see for example [KuLM] where 
the inequalities were computed for all the rank three cases. A much smaller subset of the 
generalized triangle inequalities with the same set of solutions was found by P. Belkale and 
S. Kumar in [BK] and the resulting subsystem was proved to be the irredundant one by 
Ressayre in [Re]. 

The connection with decomposing tensor products of finite dimensional repre
sentations. Now suppose that G = G(IR) is the group of real points of a reductive algebraic 
group G defined over Z. Then we have the p-adic group G((Qp) and the Langlands' dual 
group GV. Suppose further that Ct, {3, , are integral in the sense that they are cocharacters 
of a maximal torus T of G defined over Z. Such cocharacters >. parametrize basis ele
ments f>.. for the spherical Hecke algebra H(G((Qp)) of G((Qp) and basis elements ch>.. of the 
representation ring R(GV of GV. The Satake isomorphism gives an explicit isomorphism 
H (G ((Qp)) ~ R(GV). However the two bases are not compatible with the isomorphism (the 
subtle relation between the two bases was computed by Luzstig [Lu]). Thus, using the 
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Satake isomorphism to identify H(G(Qp)) and R(GV
) we have two different bases for the 

same algebra and it makes sense to compare the two sets of resulting structure constants. 
Accordingly, we define two sets of triple structure constants m( . , . , .) and n( . , . , . ) 

parametrized by triples of dominant cocharacters by 

fa. f(3. f, = m(o:,,8, 1')1 + ... and cha • ch(3. ch, = n(o:,,8, 1')1 + .... 
Let ke be the LCM of the coefficients of the highest root when expressed in terms of the 

simple roots. Assume 0: + ,8 +I' is in the coroot lattice. Then we have the following 

Theorem. 

(1)	 n(0:,,8, 1') i- 0 =? m(0:,,8, 1') i- 0 =? 0:, ,8, I' satisfy the triangle inequalities. 
(2)	 0:,,8, I' satisfy the triangle inequalities =? m(keo:, ke,8, kel') i- 0 =? n(kbo:, kb,8, kbl') i

O. 

For GL(n) we have kG = 1 so the previous theorem includes the saturation theorem of 
Knutson and Tao, [KT]. For the other classical groups kG = 2. Considerable effort has gone 
into improving the "saturation factor" kb for the simple groups other than GL(n) . There 
is still a long way to go. For example, kE = 60 and at this date the only known saturations 
factor for Es is that of [KM2] namely k~s = (60? = 3600. Kapovich and Millson, [KM1] , 
have conjectured that for E s statement (2) of the previous theorem remains true with 3600 
replaced by one. 
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LECTURE 3: THE TORIC GEOMETRY OF TRIANGULATED
 
POLYGONS IN EUCLIDEAN SPACE
 

In my third lecture, I will talk about a relation between the moduli space Mr of n-gons 
with fixed side-lengths in lR3 , integrable systems of bending flows on Mr and flat toric 
degenerations M[ of Mr attached to triangulations T of a reference planar convex n-gon. 

In the paper [7], Misha Kapovich and I (and independently Klyachko in [8]) studied 
the space of of oriented congruence classes Mr of n-gons with fixed side-lengths r = 
(rl' r2, ... ,rn) in Euclidean three space. We showed that if r does not satisfy a certain 
fixed finite set of linear equations then Mr is a Kahler manifold. Also, in case the side 
lengths (rl' r2, ... 1 rn) are integers then the space Mr coincides with the projective variety 
which is the moduli space of n weighted (by r) points on the projective line CClP'l. In what 
follows we will think of an n-gon as a n-tuple of vectors e = (el' ... , en) in Euclidean three 
space such that ei has length ri for 1 ::; i ::; n and the n-gon "closes up" in the sense that 
el + ... + en = O. 

One of the m,ain points of [7] and [8] was to construct a finite family of completely 
integrable systems on the space Mr. There is one such family for each triangulation T of 
a reference planar convex n-gon 'Trn . The Hamiltonians in the system corresponding to T 
are the lengths of the diagonals used to make the triangulation T. The Hamiltonian flow 
associated to a diagonal d (starting at a given n-gon e) divides the n-gon e along d, rotates 
half of e in space around d at speed 1 and leaves the other half of e fixed. This led Kapovich 
and me to call the flows "bending flows". Note that if d is the zero vector then we don't 
know how to rotate around it and the corresponding bending flow is not defined. Because 
of this the space Mr is rarely toric even though it is "trying to be toric" in the sense it has 
~ dim(Mr) commuting periodic Hamiltonian flows. The space Mr is stratified according to 
the vanishing of diagonals. 

In [5] the authors suggested a way around the problem by pointing out that if one 
collapses parts of the above strata (creating a more singular stratified symplectic space ) 
then the bending flows are everywhere defined in the collapsed space. We gave the name "T
congruence" to the resulting coarsening of the equivalence relation of oriented congruence. 

The construction of [5] was of particular interest because in [10] Speyer and Sturmfels had 
just constructed toric degenerations M[ of the spaces Mr using combinatorial commutative 
algebra by weighting the Plucker coordinates for Gr(2, CC) using a weighting that depended on 
a triangulation T as above. Thus it was a natural conjecture (made explicitly by Foth and 
Hu), [3], that the stratified symplectic spaces constructed in [5] were isomorphic 
to those underlying the toric varieties of [10]. 

The conjecture was proved in [4] for all triangulations T. The point of my lecture will be 
to explain the proof. I believe that the examination of singular toric varieties as stratified 
symplectic spaces (this later notion has been developed by Reyer Sjamaar, see for example 
[9]) 1 will be important in future developments. This is consistent with the overall theme of 
mirror symmetry which is to relate algebraic geometry and symplectic geometry. I intend 
to present an elementary introduction to toric varieties. 

I am currently working with Chris Manon to generalize the above results to the moduli 
space of n weighted points on CClP'm. The integrable system(s) (the "bending flows") have .. 
already been constructed in [2] and the toric degenerations can be constructed using [1]. 
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