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Consider the Poisson-Lie bracket on sl(2)∗:

{h, x}PL = 2x , {h, y}PL = −2y , {x , y}PL = h

and varieties Oα de�ned by Cas = 2−1 h2 + xy + yx = α.
Also, consider the following quadratic bracket

{h, x}′ = 2xh, {h, y}′ = −2yh, {x , y}′ = h2.

These two brackets generate a Poisson pencil

{ , }a,b = a{ , }PL + b{ , }′.
Moreover, the element Cas is Poisson central for any bracket from

this pencil:

{Cas, f }a,b = 0, ∀ f ∈ K[sl(2)∗].

Thus, this Poisson pencil can be restricted to the quotient algebra

K[sl(2)∗]/〈Cas − α〉, α ∈ K.
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Let us quantize the P.p. { , }a,b and its restrictions to Oα.
As a quantum counterpart of the PL bracket we consider the

enveloping algebra U(sl(2)~) of sl(2)~ with multiplication table

[h, x ] = 2~ x , [h, y ] = −2~ y , [x , y ] = ~ h.

Note that the element Cas remains central in U(sl(2)~).
Now, quantize the bracket { , }′ alone in a somewhat elementary

way. By replacing the Poisson bracket by the commutator and

representing the r.h.s. in the symmetric form we get

hx − xh = ν(hx + xh), hy − yh = −ν(hx + xh), xy − yx = νh2.

By putting q2 = (1− ν)/(1 + ν) we arrive to

q2hx = xh, hy = q2yh, (1 + q2)(xy − yx) = (1− q2)h2.
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Denote this algebra A(q). It has "good deformation property".

This means that for a generic q

dimA(q)(k) = dimK[sl(2)∗](k), k = 0, 1, 2, 3...

Observe that the algebra A(q) is Uq(sl(2))-covariant.
In order to quantize the whole P.p. { , }a,b we consider the algebra

A(q, ~) de�ned by

q2hx − xh = 2~x , hy − q2yh = −2~y ,

(1 + q2)(xy − yx)− (1− q2)h2 = 2~h.

It is possible to see that Gr A(q, ~) ∼= A(q). So it is a two

parameter deformation of the algebra K[sl(2)∗] indeed. Its
semiclassical counterpart is the P.p. above.
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In order to explicitly quantize this P.p. restricted to a variety Oα
we have to �nd the center of the algebra A(q, ~).
Observe that the element Cas is not central in the algebra A(q, ~)
any more. However, the element

Casq = q−1xy + qyx + (q + q−1)−1h2

is.

This element is not symmetric. Consequently, the pairing on the

space span(x , h, y) which is de�ned by the matrix inverse to that

composed from the coe�cients of the element Casq becomes

〈h, h〉 = 2q = q + q−1, 〈x , y〉 = q−1, 〈y , x〉 = q.

It is not symmetric either. However, it is Uq(sl(2))-covariant.
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Now, present the quantum counterpart of the restricted P.p. via

the following quotient

A(q, ~)/〈Casq − α〉.

It is a braided non-commutative a�ne algebraic variety

(hyperboloid).

In a similar way other "braided varieties" can be constructed. To

this end we have to de�ne "braided analogs" of the enveloping

algebras U(gl(n)) or those U(sl(n)) and to �nd reasonable analogs

of the equation Casq = α.
Now, explain the meaning of the term "braided".
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By braided geometry we mean geometry dealing with a braiding

playing the role of a �ip (or super-�ip).

By a braiding we mean an invertible operator R : V⊗2 → V⊗2

where V is a vector space over the ground �eld K satisfying the

so-called quantum Yang-Baxter equation

R12 R23 R12 = R23 R12 R23, R12 = R ⊗ I , R23 = I ⊗ R.

All notions and operators of "braided geometry" are associated to a

given braiding.

First, we discuss a possible form of such a braiding.
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The most studied are braidings of three types:

1. Involutive symmetries, i.e. such that R2 = I .

2. Hecke symmetries, i.e. those subject to the Hecke condition

(q I − R)(q−1 I + R) = 0, q ∈ K.

3. Birman-Murakami-Wenzl symmetries.

We are interested in Hecke symmetries.
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The simplest examples are as follows. By �xing a basis {x , y} ∈ V

and the corresponding basis {x ⊗ x , x ⊗ y , y ⊗ x , y ⊗ y} in V⊗2 we

represent Hecke symmetries R by matrices
q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q

 ,


q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 −q−1

 .

They are deformations of a usual �ip and a super-�ip respectively.

We call them and their higher analogs (super-)standard. However,

there is a lot of Hecke symmetries which are deformations neither

of �ips nor of super-�ips.
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To any Hecke symmetry R we associate "symmetric"

Sym(V ) = T (V )/〈Im(qI − R)〉

and "skew-symmetric"∧
(V ) = T (V )/〈Im(q−1I + R)〉

algebras of the space V . They are graded algebras. Consider their

Poincaré-Hilbert (PH) series:

P+(t) =
∑

dim Symk(V )tk , P−(t) =
∑

dim
∧k

(V )tk .

For them the following relation was shown by myself 25 years ago

P+(t)P−(−t) = 1.
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Note that in general, the PH series P±(t) are always rational

functions (Phung Ho Hai, A.Davydov). In a sense the couple (p|r)
where p is the degree of the numerator and r is that of the

denominator of the function P−(t), is an analog of the

super-dimension. It is called bi-rank of R .

If P−(t) is a polynomial, we say that the Hecke symmetry R is

even. Then its bi-rank is (p|0). In this case we call p rank of R .

For the classical �ips and all their deformations p = n = dimV but

in general it is not so.

Example: P−(t) = 1 + n t + t2, n > 2.

Recently we have proved the mounting property.
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For some Hecke symmetries R : V⊗2 → V⊗2, called skew-invertible

an analog of the usual trace

TrR : End(V )→ K

can be introduced.

Thus, for the standard symmetry above such R-trace is

TrR

(
a b

c d

)
= q−3a + q−1d .

Moreover, for a skew-invertible symmetry of bi-rank (m|n) it is

possible to contract a category of linear spaces looking like that of

U(gl(m|n))-modules. This category contains the dual space V ∗, all
tensor product V⊗k ⊗ (V ∗)⊗l and some their subspaces.

A space V ∗ is called dual if there exists a nondegenerated pairing

V ⊗ V ∗ → K which is a category morphism. Whereas all category

morphisms are assumed to commute with braidings.
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We would like to de�ne Sym(End(V )) and
∧

(End(V )) with g.d.p.

Note that only few objects of the mentioned category allow such

"symmetric" and "skew-symmetric" algebras.

Fortunately, for the object End(V ) its "symmetric" and

"skew-symmetric" algebras with g.d.p. exist. By miracle

Sym(End(V )) is nothing but the so-called Re�ection Equation

(RE) algebra. It is a unital algebra generated by entries of a matrix

L = (l ji ) subject to the system

R L1 R L1 = L1 R L1 R, L1 = L⊗ I .

It is a particular case of the so-called Quantum Matrix (QM)

algebras. Another example is an "RTT algebra". It is a unital

algebra generated by entries of a matrix T = (t ji ) subject to the

system

R T1 T2 = T1 T2 R, T1 = T ⊗ I , T2 = I ⊗ T .
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Example: let R be standard Hecke symmetry above. By denoting

T =

(
a b

c d

)
we get the system


q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q




a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




a b 0 0

c d 0 0

0 0 a b

0 0 c d

 =


a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




a b 0 0

c d 0 0

0 0 a b

0 0 c d




q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q

 .
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Whereas the system for the corresponding RE algebra is


q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q




a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q

 ·


a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

 =


a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

 ·


q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q




a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q
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Compare properties of these two QM algebras. RTT algebra can be

equipped with a bi-algebra structure. Essentially, this means that in

it there is a coproduct ∆ compatible with its product

∆(f ◦ g) = ∆(f ) ◦∆(g).

If a Hecke symmetry is "even", in the RTT algebra there is an

analog detRT of the determinant. This is a "group-like" element:

∆(detRT ) = detRT ⊗ detRT .

If it is central, then the algebra RTT/〈detRT − 1〉 is an analog of

the coordinate algebra K[SL(n)]. Its semiclassical counterpart is the

so-called Sklyanin bracket on SL(n).
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As for a RE algebra, being equipped with a similar coproduct it

becomes "braided bi-algebra" (Majid). Essentially, this means

∆(f ◦ g) = (◦ ⊗ ◦)R23(∆(f )⊗∆(g)).

If R is even, in this algebra there is an analog detRL of the

determinant as well. The quotient REA/〈detRL− 1〉 is another
analog of the algebra K[SL(n)].
Note the the both algebras are graded quadratic with g.d.p.; they

are two deformations of K[Mat(n)]. However, their properties di�er
drastically.

In our "Braided Geometry" we only use RE algebras. We need RTT

ones only for checking that our constructions are covariant w.r.t the

coaction ∆(L) = T ⊗ L⊗ T−1.
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The center of the RE algebra is much bigger than that of the

RTT algebra. In particular, the elements TrRL
k are central in

the RE algebra, and those TrRT
k are not in the RTT one.

Consider a quadratic-linear algebra

R L1 R L1 − L1 R L1 R = ~(R L1 − L1 R).

This algebra is called modi�ed RE algebra. It can be treated

as a "braided" analog of the enveloping algebra U(gl(m)~) (or

U(gl(m|n)~) and it turns into the latter algebra as q → 1

provided R is standard (resp., super-standard).
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Emphasize that for them an analog of the PBW theorem exists.

By quotienting this algebra over TrRL (which is central) we get a

braided analog of the algebra U(sl(m)~) or U(sl(m|n)~).
The above algebra A(q, ~) is nothing but a braided analog of the

algebra U(sl(2)~).
In general, standard modi�ed RE algebras are quantum

counterparts of similar Poisson pencils with gl(m) type center.

Also note that for q 6= 1 an RE algebra and the corresponding

modi�ed RE algebra are isomorphic to each other. The

isomorphism can be established by the shift map

L→ L− ~
q − q−1

I .

However, this isomorphism fails as q = 1.
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One property more of the (modi�ed or not) RE algebra is the

following. For its generating matrix L there is an analog of the

Cayley-Hamilton (CH) identity of the form

p+r∑
i=0

ap+r−i (L) Li = 0

where (p|r) is the bi-rank of R and the coe�cients ai (L) are central
in the algebra in question. The roots of the equation

p+r∑
i=0

ap+r−i (L)µi = 0

are analogs of the eigenvalues of a numerical matrix. But now they

are treated to be elements of the algebraical extension of the center

of this algebra.
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Theorem

More precisely, this CH identity is

p+r∑
i=0

Lp+r−i
min{i ,p}∑

k=max{0,i−r}

(−1)k q2k−i s[p|r ]k
i−k

(L) = 0,

where sλ is the Schur polynomial and

r boxes

{ p boxes︷ ︸︸ ︷
. . .

...

. . .︸ ︷︷ ︸
k boxes

}
l boxes

=
(

(p + 1)l , p(r−l), k
)

=: [r |p]lk .
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Theorem

This CH identity after being multiplied by s[p|r ] factorizes as follows

( p∑
k=0

(−q)k Lp−ks[p|r ]k (L)
)( r∑

l=0

q−l Lr−l s[p|r ]l (L)
)

= 0.

In terms of "even" roots µi and "odd" ones νi the identity becomes

(s[p|r ](L))2
p∏

i=1

(L− µi I )
r∏

j=1

(L− νj I ) = 0.
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Consider the simplest standard R and the corresponding modi�ed

RE algebra. Then the matrix L =

(
a b

c d

)
is subject to

L2−(q TrR(L)+q−1~)L+(
q2

2q
(q (TrR L)2−TrR(L2))+

q~
2q

TrR(L))I = 0.

Remark.

For RTT algebras such a CH identity does not exist.

Observe that in the CH identities introduced by Gelfand and all

coe�cients are not scalar but diagonal matrices.
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It is interesting to express di�erent elements of the center of the

(modi�ed) RE algebra via eigenvalues µi . F.e. in the simplest

standard case we have in the modi�ed RE algebra the following

q2 TrRL
k = µk1

qµ1 − q−1µ2 − ~
µ1 − µ2

+ µk2
qµ2 − q−1µ1 − ~

µ2 − µ1
.

Note that in the classical limit ~ = 0, q = 1 this formula turns into

Tr Lk = µk1 + µk2 .

In general this formula is much more complicated (below, the

eigenvalues µi and νi are respectively "even" and "odd"):
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Theorem

In the REA the following holds

TrRL
k =

p∑
i=1

diµ
k
i +

r∑
j=1

d̃jν
k
j , where

di = q−1
p∏

m=1,m 6=i

µi − q−2µm
µi − µm

r∏
j=i

µi − q2νj
µi − νj

,

d̃j = −q
p∏

i=1

νj − q−2µi
νj − µi

r∏
m=1,m 6=j

νj − q2νm
νj − νm

.
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Our next aim is to de�ne elements of di�erential calculus on an RE

algebra and to exhibit some applications. As a result we'll get a

very astonishing di�erential calculus on the algebra U(gl(m|n)).

Let us modify the Woronowicz's di�erential calculus on a matrix

pseudogroup. In fact, his calculus consists of an RTT algebra

playing the role of "function algebra", an algebra generated by

analogs of one-sided "vector �elds" and that generated by �rst

di�erentials. Woronowicz keeps the usual Leibniz rule for the de

Rham operators and de�nes some permutation relations between

"functions" and "di�erentials". Lately, the algebra generated by

"vector �elds" was identi�ed as an RE one.
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We replaced the RTT algebra by another copy of the RE algebra.

Thus, we have two copies of the RE algebra. One of them

(generated by the matrix M and denotedM) is that of

"functions", and the other one (generated by the matrix L and

denoted L) is that of "di�erential operators" (its generators are

"vector �elds"). The action of the algebra L onto thatM is

de�ned via permutation relations between the generating matrices

R L1 R M1 = M1 R L1 R
−1.

Such permutation relations enable us to de�ne an actions of "vector

�elds" l
j
i onto "functions". In order to get the action l

j
i (ml

k ....m
q
p)

we have to transpose the "vector �eld" to the extreme right

position via the permutation relations and to apply to it the counit

ε(1) = 1, ε(l ji ) = δji .

Dimitri Gurevich with P.Pyatov, P.Saponov From Braided Geometry to Integrable systems



Quantization of a Poisson pencil
Braidings and symmetries

RTT and RE algebras
Cayley-Hamilton identities

Calculus on (modi�ed) RE algebras
Di�erential operators on U(u(2)~)

Towards a deformation of the Calogero-Moser model

Thus, elements l ji are treated to be analogs of left (right-invariant)

vector �elds. However, they are "multiplicative" vector �elds, i.e.

they are based on the group-like coproduct

∆(l ji ) =
∑
p

l
p
i ⊗ l jp.

In order to get vector �elds which are more similar to the classical

ones, we pass to the modi�ed form of the RE algebra L (i.e. we

apply the shift L = K − 1
q−q−1 I ). Then the coproduct on the

generators k ji of the modi�ed form of the RE algebra is

∆(k ji ) = k
j
i ⊗ 1 + 1⊗ k

j
i − (q − q−1)

∑
p

k
p
i ⊗ k jp.

It becomes classical in the limit q → 1.
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Now, by considering the matrix D = M−1 K we get analogs of

partial derivatives on the algebraM. We call the �nial algebra

braided Weyl algebra and denote it W (L,D). Its de�ning relations

are

R M1 R M1 −M1 R M1 R = 0,

R−1D1 R
−1D1 − D1 R

−1D1 R
−1 = 0,

D1 R M1 R − R M1R
−1D1 = R.

The entries ∂ji of the matrix D are called braided partial derivatives.
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Now, by passing from the matrix M to the generating matrix N of

the corresponding modi�ed RE algebra we get (after a slight

renormalization) the following system

R N1R N1 − N1R N1R = ~ (R N1 − N1R)

R−1D1R
−1D1 = D1R

−1D1R
−1

D1R N1R − R N1R
−1D1 = R + ~D1R .

It also de�nes a braided Weyl algebra denoted W (N,D). But this
algebra is well de�ned on a modi�ed RE algebra.
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By assuming R to be super-standard and by passing to the limit

q → 1 we get di�erential calculus on U(gl(p|r)~).

Let us consider an example: p = 2, r = 0. Denote a, b, c , d the

standard generators of the algebra U(gl(2)~) such that

[a, b] = ~ b, [a, c] = −~ c , [a, d ] = 0, ....., [d , c] = ~ c .

Also, pass to generators of the compact form, namely, U(u(2)~)

t =
1

2
(a + d), x =

i

2
(b + c), y =

1

2
(c − b), z =

i

2
(a − d)

we get the standard u(2)~ table of commutators

[x , y ] = ~ z , [y , z ] = ~ x , [z , x ] = ~ y , t is central.
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Then the corresponding permutation relations become

[∂t , t] =
~
2
∂t +1, [∂t , x ] = −~

2
∂x , [∂t , y ] = −~

2
∂y , [∂t , z ] = −~

2
∂z ,

[∂x , t] =
~
2
∂x , [∂x , x ] =

~
2
∂t + 1, [∂x , y ] =

~
2
∂z , [∂x , z ] = −~

2
∂y ,

[∂y , t] =
~
2
∂y , [∂y , x ] = −~

2
∂z , [∂y , y ] =

~
2
∂t + 1, [∂y , z ] =

~
2
∂x ,

[∂z , t] =
~
2
∂z , [∂z , x ] =

~
2
∂y , [∂z , y ] = −~

2
∂x , [∂z , z ] =

~
2
∂t + 1.

The Leibnitz rule on this algebra can be presented via the coproduct

∆∂ji = ∂ji ⊗ 1 + 1⊗ ∂ji + ~
∑
p

∂jp ⊗ ∂
p
i .

Whereas the partial derivatives commute with each other.
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Thus, on the algebra U(u(2)~) we can de�ne an analog of any

di�erential operator and equation. F.e. the Klein-Gordon equation

is de�ned in the classical way

(�−m2) f = 0, � = ∂2t − ∂2x − ∂2y − ∂2z

Here f is an element of the algebra U(u(2)~) or its completion and

m is the "mass of a NC particle". However, the partial derivatives

coming in this equation are subject to the modi�ed version of the

Leibnitz rule. In a similar way we de�ne NC analogs of other wave

(Dirac, Maxwell...) operators.
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As for the de Rham operator d it can be de�ned on "functions" via

d(f ) = dt ∂t(f ) + dx ∂x(f ) + dy ∂y (f ) + dz ∂z(f ).

In a similar way we can de�ne de Rham operator d on di�erential

forms. Namely, we put

d(ω f ) = ω dt ∂t(f ) + ω dx ∂x(f ) + ω dy ∂y (f ) + ω dz ∂z(f )

where ω is a pure di�erential form (d t, ...d t dx , ... and so on). The

relations between the di�erentials dt, ..., dz are assumed to be

classical dt dx = −dx dt, i.e. these generators anticommute.

This property together with the commutativity of the partial

derivatives entails d2 = 0, i.e. d is a di�erential indeed.

Dimitri Gurevich with P.Pyatov, P.Saponov From Braided Geometry to Integrable systems



Quantization of a Poisson pencil
Braidings and symmetries

RTT and RE algebras
Cayley-Hamilton identities

Calculus on (modi�ed) RE algebras
Di�erential operators on U(u(2)~)

Towards a deformation of the Calogero-Moser model

Our immediate objective is to de�ne and calculate the radial part of

the Laplacian ∆ = ∂2x + ∂2y + ∂2z on the algebra U(u(2)~).

De�nition

The operator ∆ restricted to the center Z = Z (U(u(2)~)) of the

algebra U(u(2)~) is called the radial part of the Laplacian ∆ and is

denoted ∆rad .

This de�nition is motivated by the following theorem

Theorem

The result of applying ∆ to any element Tr Lk is central as well.

Note that t, x2 + y2 + z2 ∈ Z (U(u(2)~)). By expressing these

elements and those ∆(t), ∆(x2 + y2 + z2) via µ1, µ2, we get

∆rad realized through these eigenvalues.
Dimitri Gurevich with P.Pyatov, P.Saponov From Braided Geometry to Integrable systems



Quantization of a Poisson pencil
Braidings and symmetries

RTT and RE algebras
Cayley-Hamilton identities

Calculus on (modi�ed) RE algebras
Di�erential operators on U(u(2)~)

Towards a deformation of the Calogero-Moser model

By introducing new variables λ = µ1 + µ2 and µ = (µ1 − µ2)2 we

get

∆rad (f (λ, µ)) =
1

~2
(2f (λ+ 2~, µ)

−f (λ+ 2~, µ+ 4~2 + 4~
√
µ)− f (λ+ 2~, µ+ 4~2 − 4~

√
µ)

+
2
√
µ

1

~
(f (λ+ 2~, µ+ 4~2 − 4~

√
µ)

−f (λ+ 2~, µ+ 4~2 + 4~
√
µ)).
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In the limit ~→ 0 the di�erence operator ∆rad turns into the

following second order di�erential operator

−16µ d2

d µ2
− 24

d

d µ
.

Being rewritten via the variable r such that µ = −4r2 we get the

usual radial part of the classical Laplacian on R3

d2

d r2
+

2

r

d

d r
.
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In the classical (commutative) setting the radial part of the

Laplacian

∆ = TrD2 =
∑

1≤i ,j≤m
∂
l
j
i

∂l i
j

de�ned on K[Mat(m)] equals∑
∂2i + 2

∑
i ,j

∂i − ∂j
µi − µj

, ∂i = ∂µi
.

This operator is gauge equivalent to the Calogero-Moser one∑
∂2i + 2

∑
i<j

1

(µi − µj)2
.
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Discuss a way of getting a two parameter deformation of this model.

Let N be the standard mRE algebra (it is a braided deformation of

the enveloping algebra U(gl(m)~)). Also, let D be the matrix of

the partial derivatives on this mRE algebra. Consider the operators

TrRD
k , k = 0, 1, 2, ...,m acting on the algebra N .

They commute with each other. Besides, they map the center

Z = Z (U(gl(m)~)) of the algebra U(gl(m)~) into itself.

Consequently, restrictions of the operators TrRD
k to Z are well

de�ned.
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By expressing these restricted operators via the eigenvalues of the

generating matrix N of the algebra N we get a family of operators

in involution. Hopefully, these operators are di�erence ones and

they are two-parameter deformations of the corresponding classical

di�erential operators which are gauge equivalent to the rational

Calogero-Moser operator and its higher counterparts respectively.

However, computations in higher dimensional case become much

harder.

Dimitri Gurevich with P.Pyatov, P.Saponov From Braided Geometry to Integrable systems


	Quantization of a Poisson pencil
	Braidings and symmetries
	RTT and RE algebras
	Cayley-Hamilton identities
	Calculus on (modified) RE algebras
	Differential operators on U(u(2))
	Towards a deformation of the Calogero-Moser model

