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F.D.

Compatible Lax equations for f.d. matrices 1

@ Matrix Lie group G with Lie algebra g
@ g;,i = 1,2, Lie subalgebras of g

g=01Dg

m; the projection of g onto g; induced by this decomposition

g; Lie algebras of the Lie subgroup G;

G = G1Gy, with Gt NGy =1Id

8€G, g=2g18.8 € Gi
Two sets linear independent, commuting matrices:

{F,-llgigmg}eggand{Gj|1§j§m1}€gl.
e [Fi,Gj] =0 for all i and ;.



F.D.

Compatible Lax equations for f.d. matrices 2

@ They generate the commuting flows
my my
v =9(t,5) = (ti,5) = exp(>_ tiFi + Y _ 5iG))
i=1 j=1

0 gcG:
V(tvs)g'y(ta 5)_1 = gl(t75)_1g2(t75)'

e Multidimensional flows J; and §G; in g:
F; = glFigfl, 1<i<mp, and §; = gngggl, 1<i<m.
@ This deformation preserves the commutativity of each set

[§f1’?i2] =0= [9j179j2]a

Helminck Relations Toda and KdV



F.D.

Compatible Lax equations for f.d. matrices 3

o Gi + Gy-variant:

Notations being as above, the deformations {F;} and the {G;} of
the initial commuting directions satisfy

7.(:}'1'2) = [Fip, m(Fi)] = [m2(Fi ), Fi]

7(912) [9127772(911)] - [771(9_/1) 912]

0

(97511(3”:'2) = [m1(51), Fs]
0

at; (%) = [m2(Fa), G5l

4

Helminck Relations Toda and KdV



F.D.

Compatible Lax equations for f.d. matrices 4

@ Gi-variant: only the {F; |1 <i<mp} € g
o Commuting flows:

Y(t) =t -tm) = exp() _ tiF)
i=1

@ Decomposition:

1

Y(t)gy(t) Tt =g ()7

gg(t).

The deformations {F; := g1 F,-gl_l} of the initial commuting
directions satisfy

8%(9,2) = [Fs, m(Fa)] = [r2(F), T

v
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Mz (R)

7, X Z-matrices 1

e Commutative k-algebra R, k =R or C.
e My(R) : Z x Z-matrices, coefficients from R
o A= (aj) € Mz(R):

dAn—1n—1 dn—1n @dn—1n+1
dn n—1 dnn dn n+1

dn+1n—-1 @dn+ln 9An+1n+1
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Mz (R)

Z, X Z-matrices 2

e To {d(s)|s € Z} in R is associated diag(d(s)):

dn—-1) 0 0
0 din) 0
0 0 d(n+1)

@ Diagonal matrices:

D1(R) = {d = diag(d(s))|d(s) € R for all s € Z}.
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Mz (R)

Z, X Z-matrices 3

@ Shift matrix A1

0 0

/\—1
= 1 0 O
o 1 0

@ Action of the {A™ | m € Z} on D1(R):

A"diag(d(s))A™™ = diag(d(s + m)).
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Mz (R)

Z, X Z-matrices 4

e Each A = (aj;) € Mz(R) : decomposes uniquely
A=) dN, d; € Di(R)
i€z
@ Lower triangular matrices
LT(R)={L|L=>Y &N t; € Dy(R),N € Z}
i<N
@ Upper triangular matrices
UT(R)={U| U= ulN, u € Di(R),N € Z}
i>N
o Difference operator A := A~1 — Id:

UT(R)={U| U= d;A',di € D1(R),N € Z}

i<N
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Mz (R)

Z, X Z-matrices 5

o Consider
0 0 1
wy = 0o 1
1 0 O

@ Action on diagonal and shift matrices:
widiag(d(j))ws = diag(d(—j)) and wiA"wy =A"".

e LT(R) and UT(R) isomorphic: L +— wilwq
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Mz (R)

Decompositions 1

@ Two relevant decompositions in LT (R)
e First: L = Z,SNE,'/\" €LT(R), L=Lco+ L>o

Leo=) LiN,Lsg =Y LiN

i<0 i>0
o LT(R) = LT(R)<o® LT(R)>o. Hence
g1 = LT(R)<0, g2 = LT(R)>o0

@ Gy = U_ group associated with gy

U-={g=1d+> gl g € Di(R)}

i<0
("] GQ =7
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Mz (R)

Decompositions 2

@ Second: L = Z,-SNE;/\i €LT(R), L=L<o+ Lso

Lao=> 6N, Loo=> LiN

i<0 i~0
o LT(R)=LT(R)<o® LT(R)>0. Hence
g1 = LT(R)<0, 92 =LT(R)>0

@ G; = P_ group associated with gg

P.={g=> &N g cDi(R), g € Di(R)}
i<0

(] G2 =7
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Mz (R)

Decomposition 3

e Equivalent of last decomposition in UT(R)
o M= ZiZN m,-/\i S UT(R), M = MZO + M<0

MZO = Z m;/\i, M<0 = Zﬁ;/\i

i<0 i>0
o UT(R) = UT(R)>0® UT(R)<o. Hence
g1 = UT(R)>0, 92 =UT(R)><o

@ Gi = Py group associated with g;

P.={g=> &N g € Di(R), g € Di(R)}
>0

o GQ =7
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Mz (R)

Decomposition 3

e Equivalent of last decomposition in UT(R):
o M= ZiZN m,-/\i S UT(R), M = MZO + M<0

MZO = Z m;/\i, M<0 = Zﬁ;/\i

i<0 i>0
o UT(R) = UT(R)>0® UT(R)<o. Hence
g1 = UT(R)>0, 92 =UT(R)><o

@ Gi = Py group associated with g;

P.={g=> &N g € Di(R), g € Di(R)}
>0

o GQ =7
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Mz (R)

Decomposition 4

o Mz(R) =LT(R)<o® UT(R)>0 =91 g2
@ Gy = U_ group associated with g;
@ Gp = Py group associated with go
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Hierl

LT (R)>o-hierarchy

@ Deformation of A in lower triangular matrices:

Li=A+> "IN
i<0

e Example: L=UAUY, Ue G = U_.

@ R ring of functions in flow parameters {t;} w.r.t. A',i > 1,
stable under all 5
3t .

i = ait'l
o Lax equations of the LT (R)>o-hierarchy:

05,(L) = [(£7)20,£]

@ Trivial solution A
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Hierl

LT (R)~o-hierarchy

@ Deformation of A in lower triangular matrices:

N:= Z n;/\i, n € 'Dl(R)*

i<1

e Example: N=PAP7! Pec G =P_.

@ R ring of functions in flow parameters {t;} w.r.t. A',i > 1,
stable under all 5
3t .

i = ait'l
e Lax equations of the LT (R)so-hierarchy:

05,(N) = [(N)>0,N]

@ Trivial solution A
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Hierl

UT (R)o-hierarchy

o Deformation of A~1 in upper triangular matrices:

M:= Z m,'/\", m_1 € @1(/'-\))*
i>—1

o Example: M =PA 1P Pec G = P..
o R ring of functions in flow parameters {s;} w.r.t. A= j > 1,
stable under all
0
Os, :

i 8Sj.

e Lax equations of the UT(R)<o-hierarchy:
05,(M) = [(M)<0, M]

@ Trivial solution A1
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Two dimensional Toda hierarchy

@ Two deformations

Li=A+> LN, and M:= > miN,m_y € D1(R)*

i<0 i>—1

@ R ring of functions in the flow parameters {t;} w.r.t.
N',i>1, and the flow parameters {s;} w.rt. A/, j > 1,
stable under all

0

0
Oy = - and Oy, := 8SJ

' ot;

@ Lax equations of the two dimensional Toda hierarchy:
05,(L) = [(£1)z0, £], 85,(M) = [(£')z0, M]

05, (M) = [(W)<0, M], 95(L) = [(W)<o, L]

@ Trivial solutions A, A~!
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Psd

Pseudo differential operators 1

R ring of functions in {t; | i > 1}

0 = at : R — R, priveleged derivation £ = 01
Rl = {3 yai&',ai € R forall i >0}
Multiplication in R[¢]:

(Zaiff) ijbjé" => > ( ) by)e Ik,

i ij 0<k<i
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Psd

Pseudo differential operators 2

@ ForeachmeZ, k> 1,

(7) - mtsinten ()

@ Pseudo differential operators

N
Psd =R, ¢ ={p= > p&,peR}
j=—00
o Multiplication:
abi=3 2.2 () 210 ()¢~
j i s=0
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Psd

Decompositions in Psd 1

e First decomposition in R[¢,£71):

P = ZPgJ Y PE+Y P =P+ Pso
j<0 j=>0
o Lie algebra Psd = Psd<g @ Psd>o = g1 ® g2

@ Group corresponding to g1

Gi={g=1+) g& gecR}

Jj<0
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Psd

Decompositions in Psd 2

@ Second decomposition in R[¢,£71):

P= ZP§J Y P+ P =P<o+ Pso

Jj<0 j>0

o Lie algebra decomposition Psd = Psd<o @ Psdso

@ Group corresponding to g1

Gi={g=) g& gecRgecR}
Jj<0
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KP hierarchy

@ Decomposition Psd = Psd<g @ Psd>o = g1 @ g
@ Deformation L =& + Zizl U&7, B = (Lk)ZO
o Examples: L =PEP7L, Pe G, P = Id+Z,-21 pi&™

@ R ring of functions in the parameters {t;} corresponding to
&', i >1,, stable under all

)
0 = 5,

@ Lax equations of the KP hierarchy

Oy, (L*2) = [Byy, L*2] = [L*2, LM,], ky and Ky > 1.
kq 1 <0
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Strict KP hierarchy

@ Decomposition Psd = Psd<g @ Psd~o = g1 @ g2

o Consider deformations
M:§+m1+m2§*1+~-

Examples: M = P¢P7L,
PeGL,P=po+Yis1pi€ " po € R

R and 0y, as above

Let G, = (M")so,r > 1.

Strict KP hierarchy for M and its powers:

Or, (M*2) = [Ciy, M*] = [M* ME,] Ky and kp > 1
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Geometry 1

@ Hilbert space

H= {Zanz” | ap € (C,Z | an |°< oo},
nEZ neZ
@ Decomposition H = Hy @& H_, where

Hy = {Z anz" € H} and H_ = {Z apz" € H}

n>0 n<0

e Grassmannian Gr(H): closed subspaces W of H such that

o Orthogonal projection p; : W — H, is Fredholm
o Orthogonal projection p_ : W — H_ is Hilbert-Schmidt.
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Geometry 2

o Connected components of Gr(H): ¢ € Z
Gr9(H) = {W € Gr(H)| py : z7*W — H, has index zero}.

° GI,(SS)(H) group of all bounded invertible operators g : H — H
that decompose with respect to H = H,. & H_ as

a b
c d )’
with a and d Fredholm of index zero and b and ¢

Hilbert—Schmidt.
e Each Gr)(H) is a homogeneous space for the group GI,(SS)(H).
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Geometry 3

o Commuting flows for KP, strict KP + lower triangular:

M ={r(t) = eXP(Z tiz') | Z |ti|N" < oo, some N > 1}.
i>1 i>1

e For UT(R)<o-hierarchy:

M- ={y_(s) = exp(z siz7) | Z |s;|M < o0, some M > 1}.
> >1

@ For two dimensional Toda:

F={(t,s) =v(t)r-(s) [ v+ €T4,7- €T}
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Geometry 4

o 3, embeddings w : z!H, — H such that w.r.t.
H=(2"Hs) @ (2Hy)*

w = ("), with w_ Hilbert-Schmidt , wy — Id trace class.

o P, fiber bundle over Gr(Y)(H) with fiber
Ty = {t € Aut(z*H, )|t — Id is of trace class}.
e Extension G/ of Gl,(gs)(H) to lift action from Gr()(H) to P,

Gl = {(< i Z ),q) € GL&gg(H)xAut(zeHJr), ag~1—Id trace class}.

Helminck Relations Toda and KdV



Geometry 5:

Group Gl acts by w — gwg™! on .

I+ embeds in a natural way into G/

’V+=<8 Z)'_)('V-i-va)'

For w € By, define 7, : GI — C by

1

Tw((g:q)) = det((g~ wq)+).

If t belongs to Ty, then there holds 7,y0: = det(t)7y.
The restriction of 7, to Iy is denoted 7w/ ((t;)) = Tw(t).
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Solutions KP

Segal-Wilson:

W e Gr'9(H) — Ly = PwéPy}

Ly solution of the KP-hierarchy

Pw =1+ 2;21 Pif_i

Each p; rational expression in 7y, and its derivatives.
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Solutions
Solutions strict KP

Take W € GriO(H) and wo € W, wp # 0

Let wg- = {w |we W,w L wy}

(Wv WO) = MW,WO = QW,WO£Q|Z/{W0

M ., solution of the strict KP-hierarchy

QW,WO = ZiZO q;f‘i, qo € R*

Each g; rational expression in Ty , Twg- and their derivatives.
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Solutions

Solutions LT (R)>q-hierarchy

o Consider flags F = {W;}:
Wi CWe C Wy -+

with W, € Grl(H).
o F Ly = UsAU;*
e Ly solution of the LT(R)>o-hierarchy

o Uye U_
1 0 0
Us = 1 0
upg—1 1
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Solutions

Solutions LT (R)~q-hierarchy

o Consider flags F = {W;}, W, € Grl(H):
Wi CWe C Wy -+

and a basis F = {w,} of @z Wp/Wii1
o F+ F — Ngp = PspAPyf
@ Ngf solution of the LT(R)so-hierarchy

o Pyr e P_
Pe—20-2 0 0
Pre=1"" pr_10-2 pe-10-1 O
' ' ' pee
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Solutions
Solutions two dimensional Toda

o Consider g € G/r(gs)( H)

o Take the commuting flows

~(t,s) = exp Zt, exp ZSJ

i>1 j>1

@ Decompose
V(tvs)g’)/(ta 5)_1 = u:1?+
with U_ € U_ and P4 € P,.

@ Solutions two dimensional Toda:

L =U_AU! and M = P APt
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Solutions

THANK YOU FOR YOUR ATTENTION
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