Relations between Toda and KdV-type hierarchies

G.F.Helminck

December 2011

Dedicated to the memory of Prof. Dr. T.A. Springer († 7-12-2011)

Outline of the talk

- Compatible Lax equations for f.d. matrices
- $\mathbb{Z} \times \mathbb{Z}$ -matrices
- Related hierarchies
- Pseudo differential operators
- Associated hierarchies
- Solutions+relations

- Matrix Lie group G with Lie algebra g
- \mathfrak{g}_i , i = 1, 2, Lie subalgebras of \mathfrak{g}

$$\mathfrak{g}=\mathfrak{g}_1\oplus\mathfrak{g}_2$$

- π_i the projection of g onto g_i induced by this decomposition
- \mathfrak{g}_i Lie algebras of the Lie subgroup G_i

$$G = G_1G_2$$
, with $G_1 \cap G_2 = Id$

- $g \in G$, $g = g_1g_2, g_i \in G_i$
- Two sets linear independent, commuting matrices:

$$\{F_i \mid 1 \leq i \leq m_2\} \in \mathfrak{g}_2 \text{ and } \{G_j \mid 1 \leq j \leq m_1\} \in \mathfrak{g}_1.$$

• $[F_i, G_i] = 0$ for all i and j.

They generate the commuting flows

$$\gamma = \gamma(t,s) := \gamma(t_i,s_j) = \exp(\sum_{i=1}^{m_2} t_i F_i + \sum_{j=1}^{m_1} s_j G_j)$$

• $g \in G$:

$$\gamma(t,s)g\gamma(t,s)^{-1}=g_1(t,s)^{-1}g_2(t,s).$$

• Multidimensional flows \mathfrak{F}_i and \mathfrak{G}_j in \mathfrak{g} :

$$\mathfrak{F}_i := g_1 F_i g_1^{-1}, 1 \le i \le m_2, \text{ and } \mathfrak{G}_j := g_2 G_j g_2^{-1}, 1 \le i \le m_1.$$

• This deformation preserves the commutativity of each set

$$[\mathcal{F}_{i_1}, \mathcal{F}_{i_2}] = 0 = [\mathcal{G}_{i_1}, \mathcal{G}_{i_2}],$$

• $G_1 + G_2$ -variant:

$\mathsf{Theorem}$

Notations being as above, the deformations $\{\mathfrak{F}_i\}$ and the $\{\mathfrak{G}_j\}$ of the initial commuting directions satisfy

$$\frac{\partial}{\partial t_{i_{1}}}(\mathfrak{F}_{i_{2}}) = [\mathfrak{F}_{i_{2}}, \pi_{1}(\mathfrak{F}_{i_{1}})] = [\pi_{2}(\mathfrak{F}_{i_{1}}), \mathfrak{F}_{i_{2}}]
\frac{\partial}{\partial s_{j_{1}}}(\mathfrak{G}_{j_{2}}) = [\mathfrak{G}_{j_{2}}, \pi_{2}(\mathfrak{G}_{j_{1}})] = [\pi_{1}(\mathfrak{G}_{j_{1}}), \mathfrak{G}_{j_{2}}]
\frac{\partial}{\partial s_{j_{1}}}(\mathfrak{F}_{i_{2}}) = [\pi_{1}(\mathfrak{G}_{j_{1}}), \mathfrak{F}_{i_{2}}]
\frac{\partial}{\partial t_{i_{1}}}(\mathfrak{G}_{j_{2}}) = [\pi_{2}(\mathfrak{F}_{i_{1}}), \mathfrak{G}_{j_{2}}].$$

- G_1 -variant: only the $\{F_i \mid 1 \leq i \leq m_2\} \in \mathfrak{g}_2$
- Commuting flows:

$$\gamma(t) = \gamma(t_1, \cdots, t_m) = \exp(\sum_{i=1}^m t_i F_i)$$

Decomposition:

$$\gamma(t)g\gamma(t)^{-1}=g_1(t)^{-1}g_2(t).$$

$\mathsf{Theorem}$

The deformations $\{\mathfrak{F}_i := g_1F_ig_1^{-1}\}$ of the initial commuting directions satisfy

$$\frac{\partial}{\partial t_{i_1}}(\mathfrak{F}_{i_2}) = [\mathfrak{F}_{i_2}, \pi_1(\mathfrak{F}_{i_1})] = [\pi_2(\mathfrak{F}_{i_1}), \mathfrak{F}_{i_2}]$$

- Commutative k-algebra R, $k = \mathbb{R}$ or \mathbb{C} .
- $M_{\mathbb{Z}}(R)$: $\mathbb{Z} \times \mathbb{Z}$ -matrices, coefficients from R
- $A = (a_{ij}) \in M_{\mathbb{Z}}(R)$:

$$A = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{a_{n-1}} & \mathbf{a_{n-1}} & \mathbf{a_{n-1}} & \mathbf{a_{n-1}} & \mathbf{a_{n-1}} & \ddots \\ \ddots & \mathbf{a_{n}} & \mathbf{a_{n}} & \mathbf{a_{n}} & \mathbf{a_{n}} & \mathbf{a_{n+1}} & \ddots \\ \ddots & \mathbf{a_{n+1}} & \mathbf{a_{n+1}} & \mathbf{a_{n+1}} & \mathbf{a_{n+1}} & \mathbf{a_{n+1}} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

• To $\{d(s)|s\in\mathbb{Z}\}$ in R is associated diag(d(s)):

$$\begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{d}(\mathbf{n} - \mathbf{1}) & 0 & 0 & \ddots \\ \ddots & 0 & \mathbf{d}(\mathbf{n}) & 0 & \ddots \\ \ddots & 0 & 0 & \mathbf{d}(\mathbf{n} + \mathbf{1}) & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Diagonal matrices:

$$\mathcal{D}_1(R) = \{d = \operatorname{diag}(d(s)) | d(s) \in R \text{ for all } s \in \mathbb{Z}\}.$$

Shift matrix Λ⁻¹

$$\Lambda^{-1} = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{0} & 0 & 0 & \ddots \\ \ddots & 1 & \mathbf{0} & 0 & \ddots \\ \ddots & 0 & 1 & \mathbf{0} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

• Action of the $\{\Lambda^m \mid m \in \mathbb{Z}\}$ on $\mathcal{D}_1(R)$:

$$\Lambda^m \operatorname{diag}(d(s)) \Lambda^{-m} = \operatorname{diag}(d(s+m)).$$

• Each $A = (a_{ij}) \in M_{\mathbb{Z}}(R)$: decomposes uniquely

$$A = \sum_{i \in \mathbb{Z}} d_i \Lambda^i, d_i \in \mathcal{D}_1(R)$$

Lower triangular matrices

$$LT(R) = \{L \mid L = \sum_{i \leq N} \ell_i \Lambda^i, \ell_i \in \mathcal{D}_1(R), N \in \mathbb{Z}\}$$

Upper triangular matrices

$$UT(R) = \{U \mid U = \sum_{i>N} u_i \Lambda^i, u_i \in \mathcal{D}_1(R), N \in \mathbb{Z}\}$$

• Difference operator $\Delta := \Lambda^{-1} - \operatorname{Id}$:

$$UT(R) = \{U \mid U = \sum_{i \le N} d_i \Delta^i, d_i \in \mathcal{D}_1(R), N \in \mathbb{Z}\}$$

Consider

$$w_1 = egin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{0} & 0 & 1 & \ddots \\ \ddots & 0 & \mathbf{1} & 0 & \ddots \\ \ddots & 1 & 0 & \mathbf{0} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Action on diagonal and shift matrices:

$$w_1 \operatorname{diag}(d(j))w_1 = \operatorname{diag}(d(-j))$$
 and $w_1 \Lambda^m w_1 = \Lambda^{-m}$.

• LT(R) and UT(R) isomorphic: $L \mapsto w_1Lw_1$

Decompositions 1

- Two relevant decompositions in LT(R)
- First: $L = \sum_{i \leq N} \ell_i \Lambda^i \in LT(R)$, $L = L_{<0} + L_{\geq 0}$

$$L_{<0} = \sum_{i<0} \ell_i \Lambda^i, L_{\geq 0} = \sum_{i\geq 0} \ell_i \Lambda^i$$

• $LT(R) = LT(R)_{<0} \oplus LT(R)_{\geq 0}$. Hence

$$\mathfrak{g}_1 = LT(R)_{<0}, \ \mathfrak{g}_2 = LT(R)_{\geq 0}$$

• $G_1 = U_-$ group associated with \mathfrak{g}_1

$$U_- = \{g = \operatorname{\mathsf{Id}} + \sum_{i < 0} g_i \Lambda^i, g_i \in \mathfrak{D}_1(R)\}$$

Decompositions 2

• Second: $L = \sum_{i \le N} \ell_i \Lambda^i \in LT(R)$, $L = L_{\le 0} + L_{>0}$

$$L_{\leq 0} = \sum_{i \leq 0} \ell_i \Lambda^i, L_{> 0} = \sum_{i > 0} \ell_i \Lambda^i$$

• $LT(R) = LT(R)_{\leq 0} \oplus LT(R)_{>0}$. Hence

$$\mathfrak{g}_1 = LT(R)_{\leq 0}, \ \mathfrak{g}_2 = LT(R)_{> 0}$$

• $G_1 = P_-$ group associated with \mathfrak{g}_1

$$P_{-} = \{g = \sum_{i < 0} g_i \Lambda^i, g_i \in \mathcal{D}_1(R), g_0 \in \mathcal{D}_1(R)^*\}$$

Decomposition 3

- Equivalent of last decomposition in UT(R)
- $M = \sum_{i>N} m_i \Lambda^i \in UT(R), \ M = M_{\geq 0} + M_{<0}$

$$M_{\geq 0} = \sum_{i \leq 0} m_i \Lambda^i, M_{< 0} = \sum_{i > 0} \ell_i \Lambda^i$$

• $UT(R) = UT(R)_{>0} \oplus UT(R)_{<0}$. Hence

$$\mathfrak{g}_1 = UT(R)_{\geq 0}, \ \mathfrak{g}_2 = UT(R)_{><0}$$

• $G_1 = P_+$ group associated with \mathfrak{g}_1

$$P_{+} = \{g = \sum_{i>0} g_{i} \Lambda^{i}, g_{i} \in \mathcal{D}_{1}(R), g_{0} \in \mathcal{D}_{1}(R)^{*}\}$$

Decomposition 3

- Equivalent of last decomposition in UT(R):
- $M = \sum_{i>N} m_i \Lambda^i \in UT(R), \ M = M_{\geq 0} + M_{<0}$

$$M_{\geq 0} = \sum_{i \leq 0} m_i \Lambda^i, M_{< 0} = \sum_{i > 0} \ell_i \Lambda^i$$

• $UT(R) = UT(R)_{\geq 0} \oplus UT(R)_{< 0}$. Hence

$$\mathfrak{g}_1 = UT(R)_{\geq 0}, \ \mathfrak{g}_2 = UT(R)_{><0}$$

• $G_1 = P_+$ group associated with \mathfrak{g}_1

$$P_{+} = \{g = \sum_{i>0} g_{i} \Lambda^{i}, g_{i} \in \mathcal{D}_{1}(R), g_{0} \in \mathcal{D}_{1}(R)^{*}\}$$

Decomposition 4

•
$$M_{\mathbb{Z}}(R) = LT(R)_{<0} \oplus UT(R)_{>0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$$

- ullet $G_1=U_-$ group associated with \mathfrak{g}_1
- $G_2 = P_+$ group associated with \mathfrak{g}_2

$LT(R)_{\geq 0}$ -hierarchy

Deformation of Λ in lower triangular matrices:

$$\mathcal{L} := \Lambda + \sum_{i \leq 0} I_i \Lambda^i$$

- Example: $\mathcal{L} = U \Lambda U^{-1}$, $U \in G_1 = U_-$.
- R ring of functions in flow parameters $\{t_i\}$ w.r.t. $\Lambda^i, i \geq 1$, stable under all

$$\partial_{t_i} := \frac{\partial}{\partial t_i}.$$

• Lax equations of the LT(R)>0-hierarchy:

$$\partial_{t_i}(\mathcal{L}) = [(\mathcal{L}^i)_{\geq 0}, \mathcal{L}]$$

Trivial solution Λ

$LT(R)_{>0}$ -hierarchy

Deformation of Λ in lower triangular matrices:

$$\mathcal{N} := \sum_{i \leq 1} n_i \Lambda^i, n_1 \in \mathcal{D}_1(R)^*$$

- Example: $\mathcal{N} = P\Lambda P^{-1}$, $P \in G_1 = P_-$.
- R ring of functions in flow parameters $\{t_i\}$ w.r.t. $\Lambda^i, i \geq 1$, stable under all

$$\partial_{t_i} := \frac{\partial}{\partial t_i}.$$

• Lax equations of the $LT(R)_{>0}$ -hierarchy:

$$\partial_{t_i}(\mathcal{N}) = [(\mathcal{N}^i)_{>0}, \mathcal{N}]$$

Trivial solution Λ

$UT(R)_{<0}$ -hierarchy

• Deformation of Λ^{-1} in upper triangular matrices:

$$\mathfrak{M}:=\sum_{i\geq -1}m_i\Lambda^i, m_{-1}\in \mathfrak{D}_1(R)^*$$

- Example: $\mathcal{M} = P\Lambda^{-1}P^{-1}$, $P \in G_1 = P_+$.
- R ring of functions in flow parameters $\{s_j\}$ w.r.t. $\Lambda^{-j}, j \geq 1$, stable under all

$$\partial_{s_j} := \frac{\partial}{\partial s_j}.$$

• Lax equations of the $UT(R)_{<0}$ -hierarchy:

$$\partial_{s_i}(\mathcal{M}) = [(\mathcal{M}^i)_{<0}, \mathcal{M}]$$

• Trivial solution Λ^{-1}

Two dimensional Toda hierarchy

Two deformations

$$\mathcal{L}:=\Lambda+\sum_{i\leq 0}l_i\Lambda^i, \text{ and } \mathfrak{M}:=\sum_{i\geq -1}m_i\Lambda^i, m_{-1}\in \mathfrak{D}_1(R)^*$$

• R ring of functions in the flow parameters $\{t_i\}$ w.r.t. $\Lambda^i, i \geq 1$, and the flow parameters $\{s_j\}$ w.r.t. $\Lambda^{-j}, j \geq 1$, stable under all

$$\partial_{t_i} := rac{\partial}{\partial t_i} ext{ and } \partial_{s_j} := rac{\partial}{\partial s_j}.$$

• Lax equations of the two dimensional Toda hierarchy:

$$\begin{aligned} \partial_{t_i}(\mathcal{L}) &= [(\mathcal{L}^i)_{\geq 0}, \mathcal{L}], \partial_{t_i}(\mathcal{M}) = [(\mathcal{L}^i)_{\geq 0}, \mathcal{M}] \\ \partial_{s_j}(\mathcal{M}) &= [(\mathcal{M}^j)_{< 0}, \mathcal{M}], \partial_{s_j}(\mathcal{L}) = [(\mathcal{M}^j)_{< 0}, \mathcal{L}] \end{aligned}$$

• Trivial solutions Λ, Λ^{-1}

Pseudo differential operators 1

- R ring of functions in $\{t_i \mid i \geq 1\}$
- $\partial_i = \frac{\partial}{\partial t_i} : R \to R$, priveleged derivation $\xi = \partial_1$
- $R[\xi] = \{ \sum_{i=0}^{n} a_i \xi^i, a_i \in R \text{ for all } i \ge 0 \}$
- Multiplication in R[ξ]:

$$\left(\sum_{i} a_{i} \xi^{i}\right) \left(\sum_{j} b_{j} \xi^{i}\right) = \sum_{i,j} \sum_{0 \leq k \leq i} {i \choose k} a_{i} \partial_{1}^{k}(b_{j}) \xi^{i+j-k},$$

Pseudo differential operators 2

• For each $m \in \mathbb{Z}$, $k \ge 1$,

$$\binom{m}{k} := \frac{m(m-1)\cdots(m-k+1)}{k!}, \binom{m}{0} := 1$$

Pseudo differential operators

$$Psd = R[\xi, \xi^{-1}) = \{ p = \sum_{j=-\infty}^{N} p_j \xi^j, p_j \in R \},$$

• Multiplication:

$$a.b := \sum_{i} \sum_{s=0}^{\infty} {i \choose s} a_i \partial_1^s(b_j) \xi^{i+j-s}$$

Decompositions in Psd 1

• First decomposition in $R[\xi, \xi^{-1})$:

$$P = \sum_{j} P_{j} \xi^{j} = \sum_{j < 0} P_{j} \xi^{j} + \sum_{j \ge 0} P_{j} \xi^{j} = P_{< 0} + P_{\ge 0}$$

- Lie algebra $\mathrm{Psd} = \mathrm{Psd}_{<0} \oplus \mathrm{Psd}_{\geq 0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$
- Group corresponding to g₁

$$G_1 = \{g = 1 + \sum_{j < 0} g_j \xi^j, g_j \in R\}$$

Decompositions in Psd 2

• Second decomposition in $R[\xi, \xi^{-1})$:

$$P = \sum_{j} P_{j} \xi^{j} = \sum_{j \le 0} P_{j} \xi^{j} + \sum_{j > 0} P_{j} \xi^{j} = P_{\le 0} + P_{> 0}$$

- Lie algebra decomposition $\mathrm{Psd} = \mathrm{Psd}_{\leq 0} \oplus \mathrm{Psd}_{> 0}$
- Group corresponding to g₁

$$G_1 = \{g = \sum_{j \le 0} g_j \xi^j, g_j \in R, g_0 \in R^*\}$$

KP hierarchy

- Decomposition $\mathrm{Psd} = \mathrm{Psd}_{<0} \oplus \mathrm{Psd}_{\geq 0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$
- Deformation $L = \xi + \sum_{i>1} \ell_{i+1} \xi^{-i}$, $B_k = (L^k)_{\geq 0}$
- Examples: $L = P\xi P^{-1}$, $P \in G_1, P = \operatorname{Id} + \sum_{i>1} p_i \xi^{-i}$
- R ring of functions in the parameters $\{t_i\}$ corresponding to $\xi^i, i \geq 1$, , stable under all

$$\partial_{t_i} := \frac{\partial}{\partial t_i}.$$

Lax equations of the KP hierarchy

$$\partial_{t_{k_1}}(L^{k_2}) = [B_{k_1}, L^{k_2}] = [L^{k_2}, L^{k_1}_{<0}], k_1 \text{ and } k_2 \ge 1.$$

Strict KP hierarchy

- Decomposition $\operatorname{Psd} = \operatorname{Psd}_{\leq 0} \oplus \operatorname{Psd}_{> 0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$
- Consider deformations

$$M = \xi + m_1 + m_2 \xi^{-1} + \cdots$$

- Examples: $M = P\xi P^{-1}$, $P \in G_1, P = p_0 + \sum_{i \ge 1} p_i \xi^{-i}, p_0 \in R^*$
- R and ∂_{t_i} as above
- Let $C_r = (M^r)_{>0}, r \geq 1$.
- Strict KP hierarchy for *M* and its powers:

$$\partial_{t_{k_1}}(M^{k_2}) = [C_{k_1}, M^{k_2}] = [M^{k_2}, M^{k_1}_{\leq 0}], k_1 \text{ and } k_2 \geq 1$$

Hilbert space

$$H = \{ \sum_{n \in \mathbb{Z}} a_n z^n \mid a_n \in \mathbb{C}, \sum_{n \in \mathbb{Z}} \mid a_n \mid^2 < \infty \},$$

• Decomposition $H = H_+ \oplus H_-$, where

$$H_{+} = \{ \sum_{n \geq 0} a_n z^n \in H \}$$
 and $H_{-} = \{ \sum_{n < 0} a_n z^n \in H \}$

- Grassmannian Gr(H): closed subspaces W of H such that
 - Orthogonal projection $p_+: W \to H_+$ is Fredholm
 - Orthogonal projection $p_-: W \to H_-$ is Hilbert-Schmidt.

• Connected components of Gr(H): $\ell \in \mathbb{Z}$

$$\mathit{Gr}^{(\ell)}(H) = \left\{ W \in \mathit{Gr}(H) | \ p_+ : z^{-\ell}W o H_+ \ \ \mathsf{has\ index\ zero}
ight\}.$$

• $Gl_{res}^{(0)}(H)$ group of all bounded invertible operators $g: H \to H$ that decompose with respect to $H = H_+ \oplus H_-$ as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,

with a and d Fredholm of index zero and b and c Hilbert–Schmidt.

• Each $Gr^{(\ell)}(H)$ is a homogeneous space for the group $Gl_{res}^{(0)}(H)$.

Commuting flows for KP, strict KP + lower triangular:

$$\Gamma_+ = \{\gamma_+(t) := \exp(\sum_{i \geq 1} t_i z^i) \mid \sum_{i \geq 1} |t_i| N^i < \infty, \text{ some } N > 1\}.$$

• For $UT(R)_{<0}$ -hierarchy:

$$\Gamma_{-} = \{ \gamma_{-}(s) := \exp(\sum_{j \geq 1} s_j z^{-j}) \mid \sum_{j \geq 1} |s_j| M^j < \infty, \text{ some } M > 1 \}.$$

For two dimensional Toda:

$$\Gamma = \{ \gamma(t, s) = \gamma_{+}(t)\gamma_{-}(s) \mid \gamma_{+} \in \Gamma_{+}, \gamma_{-} \in \Gamma_{-} \}$$

• \mathfrak{P}_{ℓ} embeddings $w: z^{\ell}H_{+} \to H$ such that w.r.t.

$$H = (z^{\ell}H_+) \oplus (z^{\ell}H_+)^{\perp}$$

 $w = {w_+ \choose w_-}$, with w_- Hilbert-Schmidt , w_+ – Id trace class.

• \mathfrak{P}_{ℓ} fiber bundle over $\mathit{Gr}^{(\ell)}(H)$ with fiber

$$\mathfrak{T}_{\ell} = \{t \in \operatorname{Aut}(z^{\ell}H_{+})|t - \operatorname{Id} \text{ is of trace class}\}.$$

ullet Extension GI of $GI_{res}^{(0)}(H)$ to lift action from $Gr^{(\ell)}(H)$ to \mathfrak{P}_ℓ

$$GI = \{(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, q) \in GL^{(0)}_{res}(H) \times \operatorname{Aut}(z^{\ell}H_{+}), aq^{-1} - \operatorname{Id} \text{ trace class}\}.$$

Geometry 5:

- Group *GI* acts by $w \mapsto gwq^{-1}$ on \mathfrak{P}_{ℓ} .
- Γ_+ embeds in a natural way into *GI*

$$\gamma_+ = \left(egin{array}{cc} a & b \ 0 & d \end{array}
ight) \mapsto (\gamma_+, a).$$

• For $w \in \mathfrak{P}_{\ell}$, define $\tau_w : GI \to \mathbb{C}$ by

$$\tau_w((g,q)) = \det((g^{-1}wq)_+).$$

- If t belongs to \mathfrak{T}_{ℓ} , then there holds $\tau_{w \circ t} = \det(t)\tau_w$.
- The restriction of τ_W to Γ_+ is denoted $\tau_W((t_i)) = \tau_W(t)$.

Solutions KP

- Segal-Wilson:
- $W \in Gr^{(\ell)}(H) \mapsto L_W := P_W \xi P_W^{-1}$
- *L_W* solution of the *KP*-hierarchy
- $P_W = 1 + \sum_{i>1} p_i \xi^{-i}$
- Each p_i rational expression in τ_W and its derivatives.

Solutions strict KP

- Take $W \in Gr^{(\ell)}(H)$ and $w_0 \in W, w_0 \neq 0$
- Let $w_0^{\perp} = \{ w \mid w \in W, w \perp w_0 \}$
- \bullet $(W, w_0) \mapsto M_{W, w_0} := Q_{W, w_0} \xi Q_{W, w_0}^{-1}$
- M_{W,w_0} solution of the strict KP-hierarchy
- $Q_{W,w_0} = \sum_{i>0} q_i \xi^{-i}, q_0 \in R^*$
- ullet Each q_i rational expression in au_W , $au_{w_0^\perp}$ and their derivatives.

Solutions $LT(R)_{\geq 0}$ -hierarchy

• Consider flags $\mathcal{F} = \{W_\ell\}$:

$$\cdots W_{\ell+1} \subset W_{\ell} \subset W_{\ell-1} \cdots$$

with $W_{\ell} \in Gr^{(\ell)}(H)$.

- $\bullet \ \mathfrak{F} \mapsto \mathcal{L}_{\mathfrak{F}} = U_{\mathfrak{F}} \wedge U_{\mathfrak{F}}^{-1}$
- $\mathcal{L}_{\mathfrak{F}}$ solution of the $LT(R)_{\geq 0}$ -hierarchy
- U_𝒯 ∈ U_−

Solutions $LT(R)_{>0}$ -hierarchy

• Consider flags $\mathcal{F} = \{W_\ell\}$, $W_\ell \in Gr^{(\ell)}(H)$:

$$\cdots W_{\ell+1} \subset W_{\ell} \subset W_{\ell-1} \cdots$$

and a basis $F = \{\underline{w}_\ell\}$ of $\oplus_{\ell \in \mathbb{Z}} W_\ell/W_{\ell+1}$

- $\mathfrak{F} + F \mapsto \mathfrak{N}_{\mathfrak{F}F} = P_{\mathfrak{F}F} \wedge P_{\mathfrak{F}F}^{-1}$
- $\mathcal{N}_{\mathcal{F}F}$ solution of the $LT(R)_{>0}$ -hierarchy
- $P_{\mathfrak{F}F} \in P_-$

Solutions two dimensional Toda

- Consider $g \in Gl_{res}^{(0)}(H)$
- Take the commuting flows

$$\gamma(t,s) = \exp(\sum_{i>1} t_i z^i) \exp(\sum_{j>1} s_j z^{-j})$$

Decompose

$$\gamma(t,s)g\gamma(t,s)^{-1}=\mathcal{U}_{-}^{-1}\mathcal{P}_{+}$$

with
$$\mathcal{U}_- \in U_-$$
 and $\mathcal{P}_+ \in P_+$.

Solutions two dimensional Toda:

$$\mathcal{L} = \mathcal{U}_- \Lambda \mathcal{U}_-^{-1}$$
 and $\mathcal{M} = \mathcal{P}_+ \Lambda^{-1} \mathcal{P}_+^{-1}$

F.D. $M_{\mathbb{Z}}(R)$ Hier1 Psd Hier2 Geo Solutions

THANK YOU FOR YOUR ATTENTION