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Overview

Equations
Zero Curvature/Lax

−→ Spectral Curve C ⊂ S

↑ ↓

Reconstruction ←− Baker-Akhiezer Function

tU + C ∈ Jac(C) � (tU + C∣�)

Examples

▶ BPS Monopoles

▶ Sigma Model reductions in AdS/CFT

▶ KP, KdV solitons

▶ Harmonic Maps

▶ SW Theory/Integrable Systems

Difficulties:
Moduli space constrained by flows and requirements on
theta Divisor.

Goals: Spectral curves are transcendental
ℒ2 trivial⇐⇒ 2U ∈ Λ trivial ⇐⇒ � (2U + C∣�) = 0,

∫
c v ∈ ℚ

Implementation of symmetry to simplify
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Spectral Curves: data

▶ Homology basis {i}2g
i=1 = {ai , bi}gi=1

▶ algorithm for branched covers of ℙ1 (Tretkoff & Tretkoff)
▶ poor if curve has symmetries

▶ Holomorphic differentials dui (i = 1, . . . , g)

▶ Period Matrix � = ℬA−1 where

Π :=

(
A
ℬ

)
=

(∮
ai
duj∮

bi
duj

)

▶ normalized holomorphic differentials !i ,
∮
ai
!j = �ij

∮
bi
!j = �ij

▶ C often has an antiholomorphic involution/real structure

▶ reality constrains the form of the period matrix.
▶ there may be between 0 and g + 1 ovals of fixed points of the

antiholomorphic involution.
▶ Imposing reality can be one of the hardest steps.
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Spectral Curves: Flows

� (tU + C∣�)

▶ Meromorphic differentials describe flows ⇐⇒ U = 1
2�{

∮
b ∞

▶ �(e ∣ �) = 0⇐⇒ e ∈ Θ ⊂ Jac C

▶ e ≡ �Q

(
g−1∑
i=1

Pi

)
+ KQ , �Q(P) :=

∫ P

Q
!

multe � = i

(
g−1∑
i=1

Pi

)
= dimH1(C,ℒ∑g−1

i=1 Pi
) = dimH0(C,ℒ∑g−1

i=1 Pi
)

H0(C,ℒt) = 0⇐⇒ � (tU + C∣�) ∕= 0,

▶ −KQ = �∗ (Δ− (g − 1)Q) = �Q (Δ),
deg Δ = g − 1, 2Δ ≡ KC
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Spectral Curves: Constraints

C typically constrained by requiring periods of a given meromorphic
(possibly holomorphic) differential to be specified.

Harmonic Maps T 2 → S3 Hitchin gives a bijective correspondence
between harmonic maps and hyperelliptic curves C: �2 = f (�)
satisfying various constraints including (two) third class
differentials whose periods are all integers.

Closed geodesics on an ellipsoid Abenda, Fedorov: ∃ a nontrivial
cycle c =

∑n
i=1 miai , mi ∈ ℤ such that∫

c
!1 = T ,

∫
c
!j = 0, !j = z j−1dz/y j = 2, . . . , n,

T > 0 the period of the geodesic, ai chosen so that
∫
ai
!j ∈ ℝ.

Sigma Model reductions in AdS/CFT Specified filling fractions.
BPS Monopoles
ℒt=2 is trivial on C ⇐⇒ Ercolani-Sinha Constraints:

2U ∈ Λ⇐⇒ U = 1
2�{

(∮
b1
∞, . . . ,

∮
bg
∞

)T
= 1

2n + 1
2�m

⇐⇒ (Bilinear relations) ∃ 1-cycle es = n ⋅ a + m ⋅ b s.t.

(n,m)

(
A
ℬ

)
= −2(0, . . . , 0, 1), dug =

�n−2

∂P
∂�

d�,

Trancendental constraint. How do we impose them?
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Transcendence

Lindemann If �1, . . . , �n ∈ ℚ are l.i. over ℚ then e�1 , . . . , e�n are
algebraically independent. If 0 ∕= � ∈ ℚ then e� ∕∈ ℚ

E := E (K) ℚ ⊆ K ⊂ ℚ
℘′(z)2 = 4℘(z)3 − g2℘(z)− g3, g2,3 ∈ K, Δ ∕= 0

Schneider ℘(�) transcendental for 0 ∕= � ∈ ℚ
Schneider a! + b� transcendental for a, b ∈ ℚ, not both zero, ! a

period and � = 2�(!/2). The ellipse
x2

a2
+

y2

b2
= 1 has

transcendental circumference for a, b ∈ ℚ
Schneider j(z) transcendental for z ∈ ℚ and Im(z) not a quadratic
irrational.

Schneider j(z) transcendental for z ∈ ℚ and Im(z) not a quadratic
irrational.
Periods The periods of a meromorphic differential � are either zero
or transcendental (� rational, (xj , yj) ∈ E (K), a, b ∈ K)

� =
∑
j

cj
y − yj
x − xj

dx

y
+ a

dx

y
+ b x

dx

y
+ d�

Siegel (1932),Schneider (1937), Laurent (1980), Wüstholz (1984)Bertrand 1997 �3(q) =
∑∞

n=−∞ qn
2

transcendental for 0 < ∣q∣ < 1,

q ∈ ℚ
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Schneider ℘(�) transcendental for 0 ∕= � ∈ ℚ
Schneider a! + b� transcendental for a, b ∈ ℚ, not both zero, ! a

period and � = 2�(!/2).

The ellipse
x2

a2
+

y2

b2
= 1 has

transcendental circumference for a, b ∈ ℚ
Schneider j(z) transcendental for z ∈ ℚ and Im(z) not a quadratic
irrational.

Schneider j(z) transcendental for z ∈ ℚ and Im(z) not a quadratic
irrational.
Periods The periods of a meromorphic differential � are either zero
or transcendental (� rational, (xj , yj) ∈ E (K), a, b ∈ K)

� =
∑
j

cj
y − yj
x − xj

dx

y
+ a

dx

y
+ b x

dx

y
+ d�

Siegel (1932),Schneider (1937), Laurent (1980), Wüstholz (1984)

Bertrand 1997 �3(q) =
∑∞

n=−∞ qn
2

transcendental for 0 < ∣q∣ < 1,

q ∈ ℚ
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Analytic Subgroup Theorem (Wüstholz)

G a comm. alg. group defined over number field K
g =Lie(G ), b a subalgebra of g
B := expG (b⊗K ℂ) ≤ G (ℂ) an analytic subgroup defined over K
B not necessarily closed

Problem Determine B(K) := B ∩ G (K)
If ∃ 1 ∕= H ≤ G such that H(ℂ) ≤ B then 0 ∕= H(K) ≤ B(K)

Analytic Subgroup Theorem (Wüstholz) Let B ⊆ G (ℂ) be an
analytic subgroup defined over K. Then B(K) ∕= 0 iff there exists a
nontrivial algebraic subgroup H ≤ G defined over a number field
such that H(ℂ) ≤ B.
Theorem (Rosenlicht) Commutative algebraic groups G extensions
of Abelian varieties A (eg Generalized Jacobians)

0 −→ G r
a × G s

m −→ G −→ A −→ 0
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Analytic Subgroup Theorem: Example 1.

G = Ga × Gm defined over ℚ, G (ℂ) = ℂ× ℂ∗
g = ℚ×ℚ, g⊗ℚ ℂ = ℂ× ℂ, expG : (z ,w)→ (z , ew )

Assume that both � ∕= 0 and e� are algebraic
Let Δ ⊂ ℂ× ℂ be the diagonal.
Then B := expG (Δ) is connected and has dimension 1.
Now (�, �) ∈ Δ and (�, e�) ∈ B(ℚ) by assumption.
Since (�, e�) ∕= (0, 1) then B(ℚ) nontrivial.
∴ ∃ proper algebraic subgroup H ≤ G s.t. H(ℂ) ≤ B.

H(ℂ) nontrivial =⇒ dimℂH(ℂ) ≥ 1
H(ℂ) ≤ B, dimℂ B = 1 =⇒ H(ℂ) = B
∴ B is an algebraic subgroup
But B is the graph of the exponential function ez which is
evidently not algebraic.
Contradiction.

Both � ∕= 0 and e� cannot be algebraic
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Analytic Subgroup Theorem: Example 2.

E the elliptic curve over K as before.
E is a commutative algebraic group.
LieE (ℂ) ∼= ℂ, expE : ℂ→ ℙ2(ℂ), z → [℘(z), ℘′(z), 1]

G = Ga × E defined over K, G (ℂ) = ℂ× E (ℂ),
LieG (ℂ) = ℂ× ℂ
Let Δ, B be as previously.

Suppose the period ! ∕= 0 is algebraic

expG (!/2, !/2) = (!/2, [℘(!/2), ℘′(!/2), 1]) = (!/2, [℘(!/2), 0, 1])

Now ℘(!/2) satisfies 4x3 − g2x − g3 = 0 so is algebraic.
Therefore (!/2, [℘(!/2), 0, 1]) ∈ B(K) and so B(K) is nontrivial.

As previously, H(ℂ) = B and so B is an algebraic subgroup
Then ℘(z) is algebraic, a contradiction (as infinitely many poles)
! cannot be algebraic
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Analytic Subgroup Theorem: Applications

X a quasiprojective variety/number field K with a K-rational point.
! ∈ H0(X ,Ω1

X/K) a holomorphic differential on X .

Faltings-Wüstholz: (X , !)→ comm. alg. group over K
Using the analytic subgroup theorem W. deduces that

Theorem
∫
 ! ( ∈ H1(X ,ℤ)) are either zero or transcendental.

▶ Periods of elliptic curves are transcendental

▶ For a, b ∈ ℚ, a + b ∕∈ ℤ (Schneider 1948)

B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx ∕∈ ℚ

Periods of Fermat curves.

Holomorphic differential→ Jacobian, 2nd kind differential→ Ga,
3rd kind differential→ Gm.

Theorem The spectral curve of a BPS monopole not defined/ ℚ.

(n,m)

(
A
ℬ

)
= −2(0, . . . , 0, 1), dug =

�n−2

∂P
∂�

d�,

Corollary � × 2F1

(
1
3 ,

1
3 ; 1; t

)
∕∈ ℚ for t ∈ ℚ

First transcendental constraint: Number Theory+Ramanujan
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Faltings-Wüstholz: (X , !)→ comm. alg. group over K
Using the analytic subgroup theorem W. deduces that

Theorem
∫
 ! ( ∈ H1(X ,ℤ)) are either zero or transcendental.

▶ Periods of elliptic curves are transcendental

▶ For a, b ∈ ℚ, a + b ∕∈ ℤ (Schneider 1948)

B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx ∕∈ ℚ

Periods of Fermat curves.

Holomorphic differential→ Jacobian, 2nd kind differential→ Ga,
3rd kind differential→ Gm.

Theorem The spectral curve of a BPS monopole not defined/ ℚ.

(n,m)

(
A
ℬ

)
= −2(0, . . . , 0, 1), dug =

�n−2

∂P
∂�

d�,

Corollary � × 2F1

(
1
3 ,

1
3 ; 1; t

)
∕∈ ℚ for t ∈ ℚ

First transcendental constraint: Number Theory+Ramanujan

H.W. Braden Integrable Systems and Moduli Spaces



Analytic Subgroup Theorem: Applications

X a quasiprojective variety/number field K with a K-rational point.
! ∈ H0(X ,Ω1

X/K) a holomorphic differential on X .
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Symmetry

Why? Can be used to simplify the period matrix and integrals.

� ∈ Aut(C)

�∗!j = !kL
k
j , �∗

(
ai
bi

)
= M

(
ai
bi

)
:=

(
A B
C D

)(
ai
bi

)
, M ∈ Sp(2g ,ℤ)

∮
�∗

! =

∮

�∗! ⇐⇒

(
A B
C D

)(
A
ℬ

)
=

(
A
ℬ

)
L⇐⇒ MΠ = ΠL

Restricts � : �B� + �A− D� − C = 0
Curves with lots of symmetries: evaluate � via character theory

▶ How can one specify homology cycles?

▶ How to determine M, �∗() = M.? extcurves

▶ How to determine a good basis {i}?
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Example: Klein’s Curve

▶ C: X 3Y + Y 3Z + Z 3X = 0

▶ Aut(C) = PSL(2, 7) order 168.

▶ �RL =

⎛⎜⎝−1+3i
√

7
8

−1−i
√

7
4

−3+i
√

7
8

−1−i
√

7
4

1+i
√

7
2

−1−i
√

7
4

−3+i
√

7
8

−1−i
√

7
4

7+3i
√

7
8

⎞⎟⎠▶ C: w7 = (z − 1)(z − �)2(z − �2)4, � = exp(2�i/3)

Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Sheet 7

Figure: Homology basis in (z ,w) coordinates
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Example: Klein’s Curve

� =
1

2

⎛⎝e 1 1
1 e 1
1 1 e

⎞⎠, e = −1+i
√

7
2

−2KQ = �∗ (2Δ− 2(g − 1)Q) =

∫ 2Δ

∗
! − 2(g − 1)

∫ Q

∗
!

−2KQ .L =

∫ 2Δ

∗
�∗! − 2(g − 1)

∫ Q

∗
�∗!

−2KQ . [L− 1]=

∫ �(2Δ)

2Δ
! − 2(g − 1)

∫ �(Q)

Q
!

Lemma: �N =Id. If L− 1 is invertible and Q a fixed point of �
then KQ is a 2N-torsion point.

−2KQ . [L− 1] = nΠ

Lemma: �N =Id. If L− 1 is invertible and Q a fixed point of �
then KQ is a 2N-torsion point.

−2KQ . [L− 1] = nΠ

Corollary: Lemma+ ∈ Aut(C). Then

∫  (Q)

Q
! is a

2N(g − 1)-torsion point.

Idea: Use Smith Normal Form

KQ =
i√
7

(3,−1, 5) Q = (z ,w) = (�, 0)
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How to determine a good basis {i}?

Example: (Fay) � : Ĉ → Ĉ, �2 = Id, � : Ĉ → C := Ĉ/ < � >
2n fixed points. ĝ = 2g + n − 1

a1, b1, . . . ag , bg , ag+1, bg+1, . . . ag+n+1, bg+n+1, a1′ , b1′ , . . . ag ′ , bg ′

where a1′ , b1′ , . . . , ag ′ , bg ′ a basis of H1(C,ℤ) and

a�′ + �(a�) = 0 = b�′ + �(b�), 1 ≤ � ≤ g

ai + �(ai ) = 0 = bi + �(bi ), g + 1 ≤ i ≤ g + n − 1

�̂ =

⎛⎜⎜⎝
� + �

2
Π

� − �
2

p 2P p
� − �

2
Π

� + �

2

⎞⎟⎟⎠ (
� p
p P

)
∈ ℌg+n−1
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How to determine a good basis {i}?
Theorem: Let S ∈ Sp(2g ,ℤ) be a symplectic involution,
ST JS = J and S2 = Id. Then S is symplectically equivalent to

one of the form S =

(
a 0
0 a

)
where

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1p
−1m

0 1
1 0

. . .

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
If t is the number of 2× 2 blocks then g = p + m + 2t.

Corollary: Let S be a symplectic involution of W = ℤ2g with
canonical pairing. Then W = L1 ⊕ L2, < Li , Li >= 0, with stable
Lagrangian subspaces SLi = Li .
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