Asymptotic analysis of autoresonance in the system with small dissipation

Leonid Kalyakin1

1Institute of mathematics RAS, Ufa

GMMPh–2011, Moscow, December, 12-17, 2011
Outline

1. Statement of problem
2. Examples of model systems
3. Autoresonance
4. Numerical simulation
5. Asymptotic analysis
6. Effect of dissipation
7. Art of asymptotics
8. Art of stability
Statement of the problem

What about equations?
Statement of the problem

What about equations?

There are some model systems of differential equations.
Statement of the problem

What about equations?

There are some model systems of differential equations. The equations are nonlinear and nonautonomous.
Statement of the problem

What about equations?

There are some model systems of differential equations. The equations are nonlinear and nonautonomous. They are often encountered as mathematical models in different physical problems.
What about equations?

There are some model systems of differential equations. The equations are nonlinear and nonautonomous. They are often encountered as mathematical models in different physical problems.

Almost all systems are nonintegrable.
What about equations?

There are some model systems of differential equations. The equations are nonlinear and nonautonomous. They are often encountered as mathematical models in different physical problems.

Almost all systems are nonintegrable.

Asymptotics?
What about equations?

There are some model systems of differential equations. The equations are nonlinear and nonautonomous. They are often encountered as mathematical models in different physical problems.

Almost all systems are nonintegrable.

Asymptotics?

There are not any small parameters in the model equations.
What about equations?

There are some model systems of differential equations. The equations are nonlinear and nonautonomous. They are often encountered as mathematical models in different physical problems.

Almost all systems are nonintegrable.

Asymptotics?

There are not any small parameters in the model equations. We are interested for asymptotics with time at infinity.
What about equations?

There are some model systems of differential equations. The equations are nonlinear and nonautonomous. They are often encountered as mathematical models in different physical problems.

Almost all systems are nonintegrable.

Asymptotics?

There are not any small parameters in the model equations. We are interesting for asymptotics with time at infinity.

Object

The solution with increasing amplitude \(\rho(t) \to \infty \) as \(t \to \infty \), which is stable.
Initial stage of autoresonance. Zero dissipation $\beta = 0$.

Constant driver amplitude: $f_1 = 0$. Autoresonance solution.
Model systems. First example.

Perturbed pendulum

\[
\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t, \quad \lambda = \text{const} \neq 0.
\]
Model systems. First example.

Perturbed pendulum

\[\frac{d \rho}{dt} = \sin \psi, \quad \frac{d \psi}{dt} = \rho - \lambda t, \quad \lambda = \text{const} \neq 0. \]

\[\frac{d^2 \psi}{dt^2} = \sin \psi - \lambda. \]
Model systems. First example.

Perturbed pendulum

\[
\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t, \quad \lambda = \text{const} \neq 0.
\]

\[
\frac{d^2\psi}{dt^2} = \sin \psi - \lambda.
\]

Phase portrait on the \((\psi, \dot{\psi})\) plain under different \(\lambda\)
Model systems. First example.

Perturbed dissipationless pendulum

\[\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t. \]

Dissipation effect

\[\frac{d\rho}{dt} = \sin \psi - \gamma \rho, \quad \frac{d\psi}{dt} = \rho - \lambda t. \]
Model systems. First example.

Perturbed dissipationless pendulum

\[\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t. \]

Dissipation effect

\[\frac{d\rho}{dt} = \sin \psi - \gamma \rho, \quad \frac{d\psi}{dt} = \rho - \lambda t. \]

\[\lambda, \gamma = \text{const} > 0 \]
Model systems. First example.

Perturbed dissipationless pendulum

\[
\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t.
\]

Dissipation effect

\[
\frac{d\rho}{dt} = \sin \psi - \gamma \rho, \quad \frac{d\psi}{dt} = \rho - \lambda t.
\]

\(\lambda, \gamma = \text{const} > 0\)

Growing pumping & dissipation effect

\[
\frac{d\rho}{dt} = (f_0 + f_1 t) \sin \psi - \gamma \rho, \quad \frac{d\psi}{dt} = \rho - \lambda t, \quad (f_0, f_1 = \text{const}).
\]
Perturbed pendulum

\[\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t. \]

Main autoresonance equations

\[\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = b \cos \psi, \quad (b = \text{const}). \]
Model systems. Second example.

Perturbed pendulum

\[\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t. \]

Main autoresonance equations

\[\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = b \cos \psi, \quad (b = \text{const}). \]

Dissipation effect

\[\frac{d\rho}{dt} = (f_0 + f_1 t) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = b \cos \psi. \]
What is the autoresonance
What is the autoresonance

\[\frac{d^2 x}{dt^2} + \sin x = 0 \]

Phase portrait of the unperturbed pendulum

Figure: Pendulum trajectories on the \((x, \dot{x})\) plane
Problem of the perturbed pendulum dynamic

Is it possible to reach large amplitude oscillation $x \approx 1$ starting near equilibrium $x = \dot{x} = 0$ and using a weak pumping $0 < \varepsilon \ll 1$ under small dissipation $0 < \Gamma \ll 1$?

Naive resonance perturbation of the pendulum:

$$\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon \cos t.$$
Problem of the perturbed pendulum dynamic

Is it possible to reach large amplitude oscillation $x \approx 1$ starting near equilibrium $x = 0$ and using a weak pumping $0 < \varepsilon \ll 1$ under small dissipation $0 < \Gamma \ll 1$?

Naive resonance perturbation of the pendulum

$$\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon \cos t.$$
Problem of the perturbed pendulum dynamic

Is it possible to reach large amplitude oscillation \(x \approx 1 \) starting near equilibrium \(x = x = 0 \) and using a weak pumping \(0 < \varepsilon \ll 1 \) under small dissipation \(0 < \Gamma \ll 1 \)?
Problem of the perturbed pendulum dynamic

Is it possible to reach large amplitude oscillation $x \approx 1$ starting near equilibrium $x = \dot{x} = 0$ and using a weak pumping $0 < \varepsilon \ll 1$ under small dissipation $0 < \Gamma \ll 1$?

Naive resonance perturbation of the pendulum

$$\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon \cos t.$$
Problem of the perturbed pendulum dynamic

Specific of the nonlinear oscillator
Problem of the perturbed pendulum dynamic

Specific of the nonlinear oscillator

- The unperturbed pendulum is not isochronous.
Problem of the perturbed pendulum dynamic

Specific of the nonlinear oscillator

- The unperturbed pendulum is not isochronous.
- This property prevents the growing of the amplitude under constant driver frequency.
Problem of the perturbed pendulum dynamic

Specific of the nonlinear oscillator
- The unperturbed pendulum is not isochronous.
- This property prevents the growing of the amplitude under constant driver frequency.

Advanced perturbation of the pendulum
\[\frac{d^2x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2). \]
Problem of the perturbed pendulum dynamic

Specific of the nonlinear oscillator

- The unperturbed pendulum is not isochronous.
- This property prevents the growing of the amplitude under constant driver frequency.

Advanced perturbation of the pendulum

\[\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2). \]

Perturbed equation is not integrable.
Problem of the perturbed pendulum dynamic

Specific of the nonlinear oscillator

- The unperturbed pendulum is not isochronous.
- This property prevents the growing of the amplitude under constant driver frequency.

Advanced perturbation of the pendulum

\[\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon(1 + \delta t) \cos(t - \alpha t^2). \]

Perturbed equation is not integrable.

Solution is analyzed by either numerical simulation or asymptotic methods.
Pendulum under oscillating pumping. Simulation.

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos (t - \alpha t^2).
\]

Small parameters:
\[
\varepsilon = 10^{-4}, \quad \Gamma = 0 \div 10^{-4}, \quad \delta = 0 \div 10^{-4}, \quad \alpha = 0 \div 3 \cdot 10^{-6}.
\]

Input: Small initial data
\[
[\dot{x}^2 + x^2]_{t=0} \leq \varepsilon^2 / 3.
\]

Output: Energy
\[
E = \frac{1}{2} \dot{x}^2(t) + 1 - \cos x(t), \quad 0 < t \leq O(\varepsilon^{-1}).
\]
Pendulum under oscillating pumping. Simulation.

Equation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2).
\]
Pendulum under oscillating pumping. Simulation.

Equation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2).
\]

Small parameters

\[
\varepsilon = 10^{-4}, \quad \Gamma = 0 \div 10^{-4}, \quad \delta = 0 \div 10^{-4}, \quad \alpha = 0 \div 3 \cdot 10^{-6}.
\]
Pendulum under oscillating pumping. Simulation.

Equation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2).
\]

Small parameters

\[
\varepsilon = 10^{-4}, \quad \Gamma = 0 \div 10^{-4}, \quad \delta = 0 \div 10^{-4}, \quad \alpha = 0 \div 3 \cdot 10^{-6}.
\]

Input: Small initial data

\[
[\dot{x}^2 + x^2]_{t=0} \leq \varepsilon^{2/3}.
\]
Pendulum under oscillating pumping. Simulation.

Equation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon(1 + \delta t) \cos(t - \alpha t^2).
\]

Small parameters

\[
\varepsilon = 10^{-4}, \Gamma = 0 \div 10^{-4}, \delta = 0 \div 10^{-4}, \alpha = 0 \div 3 \cdot 10^{-6}.
\]

Input: Small initial data

\[
[\dot{x}^2 + x^2]_{t=0} \leq \varepsilon^{2/3}.
\]

Output: Energy

\[
E = \frac{1}{2} \dot{x}^2(t) + 1 - \cos x(t), \quad 0 < t \leq O(\varepsilon^{-1}).
\]
Nonlinear resonance – driver frequency is constant: \(\alpha = 0 \)

Constant driver amplitude.

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon \cos t.
\]
Nonlinear resonance – driver frequency is constant: \(\alpha = 0 \)

Constant driver amplitude. Zero dissipation \(\Gamma = 0 \)
Nonlinear resonance – driver frequency is constant: $\alpha = 0$

Constant driver amplitude. Effect of dissipation $\Gamma = \varepsilon$.
Nonlinear resonance – driver frequency is constant: $\alpha = 0$

Constant driver amplitude. Adiabatic approximation.
Nonlinear resonance – driver frequency is constant: $\alpha = 0$

Increasing driver amplitude $\varepsilon + \varepsilon^2 t$.

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \varepsilon t) \cos t.
\]
Nonlinear resonance – driver frequency is constant: $\alpha = 0$

Increasing driver amplitude $\varepsilon + \varepsilon^2 t$. Zero dissipation $\Gamma = 0$
Nonlinear resonance – driver frequency is constant: $\alpha = 0$

Increasing driver $\varepsilon + \varepsilon^2 t$. Effect of dissipation $\Gamma = \varepsilon$.
Nonlinear resonance – driver frequency is constant: $\alpha = 0$

Increasing driver. Adiabatic approximation.
How to get large energy under weak pumping?
Conclusion from simulation.

It is impossible to get large energy by using a constant driver frequency.
How to get large energy under weak pumping?

Conclusion from simulation.
It is impossible to get large energy by using a constant driver frequency.

Idea is
- To vary the driver frequency in order to keep the resonance with the free frequency while the energy begins to grow.
How to get large energy under weak pumping?

Conclusion from simulation.

It is impossible to get large energy by using a constant driver frequency.

Idea is

- To vary the driver frequency in order to keep the resonance with the free frequency while the energy begins to grow.

References

How to get large energy under weak pumping?

Conclusion from simulation.
It is impossible to get large energy by using a constant driver frequency.

Idea is
- To vary the driver frequency in order to keep the resonance with the free frequency while the energy begins to grow.

References
How to get large energy under weak pumping?

Conclusion from simulation.

It is impossible to get large energy by using a constant driver frequency.

Idea is

- To vary the driver frequency in order to keep the resonance with the free frequency while the energy begins to grow.

References

How to get large energy under weak pumping?

Conclusion from simulation.
It is impossible to get large energy by using a constant driver frequency.

Idea is
- To vary the driver frequency in order to keep the resonance with the free frequency while the energy begins to grow.

References
Simulation the autoresonance. Zero dissipation.

Pendulum under oscillating pumping

\[
\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cos(t - \alpha t^2).
\]

Variation of the pumping frequency as \(\alpha > 0 \).
Dissipationless systems. Decreasing driver frequency: $1 - 6 \cdot 10^{-6} t$

Constant driver amplitude $\varepsilon = 10^{-4}$. Two type of solutions.
Dissipationless systems. Decreasing driver frequency: $1 - 6 \cdot 10^{-6} t$

Constant driver amplitude $\varepsilon = 10^{-4}$. Initial stage.
Dissipationless systems. Decreasing driver frequency: \(1 - 6 \cdot 10^{-6} t \)

Constant driver amplitude \(\varepsilon = 10^{-4} \). Long times.
Dissipation systems.
Dissipation systems.

Is autoresonance possible in dissipation system?

\[\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon \cos(t - \alpha t^2), \quad \Gamma \approx \varepsilon > 0. \]
Dissipation systems. Decreasing driver frequency: $1 - 6 \cdot 10^{-6}t$

Constant driver amplitude. Effect of dissipation $\Gamma = \varepsilon$.
How to get large energy in dissipation system under $\Gamma > 0$
How to get large energy in dissipation system under $\Gamma > 0$

The result from simulation: Dissipation suppresses oscillations and all solutions vanish with time at infinity.
How to get large energy in dissipation system under $\Gamma > 0$

The result from simulation: Dissipation suppresses oscillations and all solutions vanish with time at infinity.

Idea is

- To enlarge the driver amplitude in order to both compensate dissipation losses of energy and keep system in the autoresonant mode.
How to get large energy in dissipation system under $\Gamma > 0$

The result from simulation: Dissipation suppresses oscillations and all solutions vanish with time at infinity.

Idea is

- To enlarge the driver amplitude in order to both compensate dissipation losses of energy and keep system in the autoresonant mode.

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \Gamma, \varepsilon, \delta, \alpha \ll 1.
\]
How to get large energy in dissipation system under $\Gamma > 0$

The result from simulation: Dissipation suppresses oscillations and all solutions vanish with time at infinity.

Idea is

- To enlarge the driver amplitude in order to both compensate dissipation losses of energy and keep system in the autoresonant mode.

$$\frac{d^2x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon(1 + \delta t) \cos(t - \alpha t^2), \; 0 < \Gamma, \varepsilon, \delta, \alpha \ll 1.$$

References

Decreasing driver frequency: \(1 - 6 \cdot 10^{-6} t\)

Increasing driver amplitude: \(\varepsilon + 10^{-5} t\). Zero dissipation.
Decreasing driver frequency: $1 - 6 \cdot 10^{-6} t$

Increasing driver amplitude: $\varepsilon + 10^{-4} t$. Dissipation effect.
The problem of separation

\[
d^2 x/dt^2 + \sin x = -\Gamma dx/dt + \epsilon (1 + \delta t) \cos(t - \alpha t^2),
\]
\(0 < \Gamma, \epsilon, \delta, \alpha \ll 1\).

Conclusion from simulations

The autoresonance phenomenon depends on the initial data.

Main problem in autoresonance theory

How to separate the different types of solutions?

Suggest: Analysis on the initial stage.
The problem of separation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \Gamma, \varepsilon, \delta, \alpha \ll 1.
\]

Conclusion from simulations

The autoresonance phenomenon depends on the initial data.
The problem of separation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon(1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \Gamma, \varepsilon, \delta, \alpha \ll 1.
\]

Conclusion from simulations

The autoresonance phenomenon depends on the initial data.

Main problem in autoresonance theory
The problem of separation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon(1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \Gamma, \varepsilon, \delta, \alpha \ll 1.
\]

Conclusion from simulations

The autoresonance phenomenon depends on the initial data.

Main problem in autoresonance theory

How to separate the different types of solutions?
The problem of separation

\[\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \Gamma, \varepsilon, \delta, \alpha \ll 1. \]

Conclusion from simulations
The autoresonance phenomenon depends on the initial data.

Main problem in autoresonance theory
How to separate the different types of solutions?
Suggest: Analysis on the initial stage.
Analytical results for pendulum
Analytical results for pendulum

An example of nonlinear oscillator under perturbation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1.
\]
Analytical results for pendulum

An example of nonlinear oscillator under perturbation

\[\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1. \]

Anzatz. Asymptotic approximation on the initial stage

\[x(t; \varepsilon) = \varepsilon^{1/3} \frac{1}{2} \rho(\tau) \cos(t - \alpha t^2 - \Psi(\tau)) + O(\varepsilon^{2/3}); \quad \tau = \varepsilon^{2/3} t. \]
Analytical results for pendulum

An example of nonlinear oscillator under perturbation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1.
\]

Anzatz. Asymptotic approximation on the initial stage

\[
x(t; \varepsilon) = \varepsilon^{1/3} \frac{1}{2} \rho(\tau) \cos(t - \alpha t^2 - \Psi(\tau)) + \mathcal{O}(\varepsilon^{2/3}); \quad \tau = \varepsilon^{2/3} t.
\]

Result of averaging

\[
\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi.
\]
Asymptotic approximation on the initial stage

Original equation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos (t - \alpha t^2), \quad 0 < \varepsilon \ll 1.
\]

Result of averaging

\[
\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi.
\]
Asymptotic approximation on the initial stage

Original equation

$$\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon(1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1.$$

Result of averaging

$$\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi.$$

- $$f(\tau) = 1 + (\delta / \varepsilon^{2/3}) \tau, \quad \tau = \varepsilon^{2/3} t$$
Asymptotic approximation on the initial stage

Original equation

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon(1 + \delta t) \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1.
\]

Result of averaging

\[
\frac{d\rho}{d\tau} = f(\tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \psi.
\]

- \(f(\tau) = 1 + (\delta/\varepsilon^{2/3}) \tau, \quad \tau = \varepsilon^{2/3} t \)
- \(\lambda = 2\alpha/\varepsilon^{4/3} \)
Asymptotic approximation on the initial stage

Original equation

\[\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos (t - \alpha t^2), \quad 0 < \varepsilon \ll 1. \]

Result of averaging

\[\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi. \]

- \(f(\tau) = 1 + (\delta/\varepsilon^{2/3})\tau, \quad \tau = \varepsilon^{2/3} t \)
- \(\lambda = 2\alpha/\varepsilon^{4/3} \)
- \(\gamma = \Gamma/2\varepsilon. \)
Asymptotic approximation on the initial stage

Original equation

\[
\frac{d^2 x}{dt^2} + x - \frac{x^3}{6} = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2).
\]

Result of averaging

\[
\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi.
\]

- \(f(\tau) = 1 + \left(\delta / \varepsilon^{2/3} \right) \tau \)
- \(\lambda = 2\alpha / \varepsilon^{4/3} \)
- \(\gamma = \Gamma / 2\varepsilon. \)
Asymptotic approximation on the initial stage

Anzatz on the initial stage

\[x(t; \varepsilon) = \varepsilon^{1/3} \frac{1}{2} \rho(\tau) \cos(t - \alpha t^2 - \Psi(\tau)) + O(\varepsilon^{2/3}); \quad \tau = \varepsilon^{2/3} t. \]

Reduced equations

\[\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi. \]
Asymptotic approximation on the initial stage

Anzatz on the initial stage

\[x(t; \varepsilon) = \varepsilon^{1/3} \frac{1}{2} \rho(\tau) \cos(t - \alpha t^2 - \Psi(\tau)) + O(\varepsilon^{2/3}); \quad \tau = \varepsilon^{2/3} t. \]

Reduced equations

\[\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi. \]

Problem on autoresonance
Asymptotic approximation on the initial stage

Anzatz on the initial stage

\[x(t; \varepsilon) = \varepsilon^{1/3} \frac{1}{2} \rho(\tau) \cos(t - \alpha t^2 - \Psi(\tau)) + O(\varepsilon^{2/3}); \quad \tau = \varepsilon^{2/3} t. \]

Reduced equations

\[\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi. \]

Problem on autoresonance

- Is there any solution with increasing amplitude: \(\rho(\tau) \rightarrow \infty \) as \(\tau \rightarrow \infty \)?
Asymptotic approximation on the initial stage

Anzatz on the initial stage

\[x(t; \varepsilon) = \varepsilon^{1/3} \frac{1}{2} \rho(\tau) \cos(t - \alpha t^2 - \psi(\tau)) + O(\varepsilon^{2/3}); \quad \tau = \varepsilon^{2/3} t. \]

Reduced equations

\[\frac{d\rho}{d\tau} = f(\tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \psi. \]

Problem on autoresonance

- Is there any solution with increasing amplitude: \(\rho(\tau) \to \infty \) as \(\tau \to \infty \)?
- How many solutions of that type exist?
Asymptotic approximation on the initial stage

Anzatz on the initial stage

\[x(t; \varepsilon) = \varepsilon^{1/3} \frac{1}{2} \rho(\tau) \cos(t - \alpha t^2 - \Psi(\tau)) + O(\varepsilon^{2/3}); \quad \tau = \varepsilon^{2/3} t. \]

Reduced equations

\[\frac{d\rho}{d\tau} = f(\tau) \sin \Psi - \gamma \rho, \quad \rho \left[\frac{d\Psi}{d\tau} + \lambda \tau - \rho^2 \right] = f(\tau) \cos \Psi. \]

Problem on autoresonance

- Is there any solution with increasing amplitude: \(\rho(\tau) \to \infty \) as \(\tau \to \infty \)?
- How many solutions of that type exist?
- Are they stable?
Analytical results. Dissipationless system.

\[\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad \lambda = \text{const} > 0. \]
Analytical results. Dissipationless system.

\[
\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad \lambda = \text{const} > 0.
\]

Theorem

- **Autoresonance solutions.**
 Let be \(\gamma = 0, \ f = \text{const} \). If \(\lambda > 0 \) then there exist two-parametric solution, which has the increasing amplitude \(\rho(\tau) = \sqrt{\lambda \tau} + O(\tau^{-3/8}), \ \tau \to \infty \).
Analytical results. Dissipationless system.

\[\frac{d \rho}{d \tau} = f \sin \psi, \quad \rho \left[\frac{d \psi}{d \tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad \lambda = \text{const} > 0. \]

Theorem

- **Autoresonance solutions.**
 Let be \(\gamma = 0, \ f = \text{const.} \) If \(\lambda > 0 \) then there exist two-parametric solution, which has the increasing amplitude \(\rho(\tau) = \sqrt{\lambda \tau} + \mathcal{O}(\tau^{-3/8}), \ \tau \to \infty. \)

- **Nonautoresonance solutions.**
 Let be \(\gamma = 0, \ f = \text{const.} \) There always exist two-parametric solution, which has the bounded amplitude \(\rho(\tau) = \mathcal{O}(1). \) If \(\lambda < 0 \) then the amplitude of any solution is bounded.
Analytical results. Dissipationless system.

\[
\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad \lambda = \text{const} > 0.
\]

Theorem

- **Autoresonance solutions.**
 Let be $\gamma = 0$, $f = \text{const}$. If $\lambda > 0$ then there exist two-parametric solution, which has the increasing amplitude $\rho(\tau) = \sqrt{\lambda \tau} + O(\tau^{-3/8})$, $\tau \to \infty$.

- **Nonautoresonance solutions.**
 Let be $\gamma = 0$, $f = \text{const}$. There always exist two-parametric solution, which has the bounded amplitude $\rho(\tau) = O(1)$. If $\lambda < 0$ then the amplitude of any solution is bounded.

Separation of the autoresonance solutions

\[\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad f, \lambda = \text{const} > 0. \]

Main problem in autoresonance theory
Separation of the autoresonance solutions

\[
\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad f, \lambda = \text{const} > 0.
\]

Main problem in autoresonance theory

- How to separate the different types of solutions?
Separation of the autoresonance solutions

\[\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad f, \lambda = \text{const} > 0. \]

Main problem in autoresonance theory

- How to separate the different types of solutions?
- The problem was solved by A. Neishtadt in adiabatic approximation as \(\lambda \to 0 \). That means a very slow variation of the pumping frequency.
Separation of the autoresonance solutions

\[\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad f, \lambda = \text{const} > 0. \]

Main problem in autoresonance theory

- How to separate the different types of solutions?
- The problem was solved by A. Neishtadt in adiabatic approximation as \(\lambda \to 0 \). That means a very slow variation of the pumping frequency.
- In general case the problem is not solved.
Separation of the autoresonance solutions

\[\frac{d\rho}{d\tau} = f \sin \psi, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = f \cos \psi, \quad f, \lambda = \text{const} > 0. \]

Main problem in autoresonance theory

- How to separate the different types of solutions?
- The problem was solved by A. Neishtadt in adiabatic approximation as \(\lambda \to 0 \). That means a very slow variation of the pumping frequency.
- In general case the problem is not solved.
- There are some numerical results.
Separation of the autoresonance solutions

The phase plain at the initial moment (R.Garifullin, 2003)
Separation of the autoresonance solutions

The phase plain at the initial moment (R. Garifullin, 2003)
Dissipation systems.

\[d^2x/dt^2 + \sin x = -\Gamma dx/dt + \varepsilon \cos (t - \alpha t^2), \quad \Gamma \approx \varepsilon > 0. \]

Is autoresonance possible in dissipation systems?
Dissipation systems.

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon \cos(t - \alpha t^2), \quad \Gamma \approx \varepsilon > 0.
\]

Is autoresonance possible in dissipation system?
Dissipation system under a constant pumping amplitude

Main resonance equations

\[
\frac{d\rho}{d\tau} = f(\tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = g(\tau) \cos \psi, \quad \gamma, \lambda > 0.
\]
Dissipation system under a constant pumping amplitude

Main resonance equations

\[
\frac{d\rho}{d\tau} = f(\tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = g(\tau) \cos \psi, \quad \gamma, \lambda > 0.
\]

Theorem.

Let be \(f = \text{const.} \) If \(\gamma > 0 \) then the amplitude of each solution is bounded.
Dissipation system under a constant pumping amplitude

Main resonance equations

\[
\frac{d\rho}{d\tau} = f(\tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = g(\tau) \cos \psi, \quad \gamma, \lambda > 0.
\]

Theorem.

Let be \(f = \text{const}. \) If \(\gamma > 0 \) then the amplitude of each solution is bounded.

Corollary.

Autoresonance phenomenon can not be in any dissipation system under constant driver amplitude.
Constant pumping amplitude. Damping under dissipation

Strong dissipation $\gamma = 1$

![Graph showing damping over time](image)
Constant pumping amplitude. Damping under dissipation

Weak dissipation $0 < \gamma \ll 1$
In order to compensate dissipation losses of energy and to keep system in the autoresonant mode we offer to increase slowly the pumping amplitude:

\[
\begin{align*}
\frac{d^2 x}{dt^2} + \sin x &= -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos (t - \alpha t^2), \\
\delta &\approx \varepsilon^2/3.
\end{align*}
\]
Resonance under dissipation $\Gamma > 0$. Idea.

In order to compensate dissipation losses of energy and to keep system in the autoresonant mode we offer to increase slowly the pumping amplitude:

$$\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad \delta \approx \varepsilon^{2/3}.$$
In order to compensate dissipation losses of energy and to keep system in the autoresonant mode we offer to increase slowly the pumping amplitude:

\[
\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \quad \delta \approx \varepsilon^{2/3}.
\]

Under \(f_1 = \delta / \varepsilon^{2/3} \), \(\lambda = 2\alpha / \varepsilon^{4/3} \), \(\gamma = \Gamma / 2\varepsilon \) and slow time \(\tau = \varepsilon^{2/3} t \):

Averaged equations

\[
\frac{d\rho}{d\tau} = -(1 + f_1 \tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = (1 + f_1 \tau) \cos \psi.
\]
Resonance under dissipation $\Gamma > 0$. Idea.

In order to compensate dissipation losses of energy and to keep system in the autoresonant mode we offer to increase slowly the pumping amplitude:

$$\frac{d^2 x}{dt^2} + \sin x = -\Gamma \frac{dx}{dt} + \varepsilon (1 + \delta t) \cos(t - \alpha t^2), \; \delta \approx \varepsilon^{2/3}.$$

Under $f_1 = \delta / \varepsilon^{2/3}$, $\lambda = 2\alpha / \varepsilon^{4/3}$, $\gamma = \Gamma / 2\varepsilon$ and slow time $\tau = \varepsilon^{2/3} t$:

Averaged equations

$$\frac{d\rho}{d\tau} = -(1 + f_1 \tau) \sin \psi - \gamma \rho, \; \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = (1 + f_1 \tau) \cos \psi.$$

Dissipation system under the varying pumping amplitude

Main resonance equations

$$\frac{d\rho}{d\tau} = -(f_0 + f_1\tau)\sin\Psi - \gamma\rho, \quad \rho\left[\frac{d\psi}{d\tau} + \lambda\tau - \rho^2\right] = (f_0 + f_1\tau)\cos\Psi.$$
Dissipation system under the varying pumping amplitude

Main resonance equations

\[\frac{d\rho}{d\tau} = -(f_0 + f_1 \tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2 \right] = (f_0 + f_1 \tau) \cos \psi. \]

Theorem

- Autoresonance solutions. Let be \(\gamma > 0 \) and \(f_1 \neq 0 \). If \(\lambda > 0 \) then there exists two-parametric solution, which has the increasing amplitude \(\rho(\tau) = \sqrt{\lambda \tau} [1 + o(1)], \ \tau \to \infty. \)
Main resonance equations

\[
\frac{d\rho}{d\tau} = -(f_0 + f_1 \tau) \sin \psi - \gamma \rho, \quad \rho \left[\frac{d\psi}{d\tau} + \lambda \tau - \rho^2\right] = (f_0 + f_1 \tau) \cos \psi.
\]

Theorem

- **Autoresonance solutions.** Let be \(\gamma > 0 \) and \(f_1 \neq 0 \). If \(\lambda > 0 \) then there exists two-parametric solution, which has the increasing amplitude \(\rho(\tau) = \sqrt{\lambda \tau}[1 + o(1))] \), \(\tau \to \infty \).

- **Nonautoresonance solutions.**
 Let be \(\gamma > 0 \). There always exists two-parametric solution, which has the bounded amplitude \(\rho(\tau) = O(1) \).
Autoresonance and dissipation

Increase of the driver amplitude: \(f_1 = 0.25 \). Nonautoresonance.
Autoresonance and dissipation

Increase of the driver amplitude: $f_1 = 0.3$. Autoresonance.
Autoresonance and dissipation

Increase of the driver amplitude: $f_1 = 0.35$. Autoresonance.
Conclusions for the pendulum

We proved the existence of the autoresonance phenomenon in the oscillating systems which have a small dissipation. Increase of the small driver amplitude is necessary for existence of this phenomenon. Increase of the output amplitude is determined by variation of the driver frequency. Ensemble of the autoresonance solutions depends on the rate of growth of the driver amplitude.
Conclusions for the pendulum

We proved the existence of the autoresonance phenomenon in the oscillating systems which has a small dissipation.
Conclusions for the pendulum

- We proved the existence of the autoresonance phenomenon in the oscillating systems which has a small dissipation.
- Increase of the small driver amplitude is necessary for existence of this phenomenon.
Conclusions for the pendulum

- We proved the existence of the autoresonance phenomenon in the oscillating systems which has a small dissipation.

- Increase of the small driver amplitude is necessary for existence of this phenomenon.

- Increase of the output amplitude is determined by variation of the driver frequency.
Conclusions for the pendulum

- We proved the existence of the autoresonance phenomenon in the oscillating systems which has a small dissipation.
- Increase of the small driver amplitude is necessary for existence of this phenomenon.
- Increase of the output amplitude is determined by variation of the driver frequency.
- Ensemble of the autoresonance solutions depends on the rate of growth of the driver amplitude.
Difficulty of the asymptotics

\[
\begin{align*}
\rho(t) &= \lambda t + \sum_{k=0}^{\infty} \rho_k t^{k/2}, \\
\Psi(t) &= \Psi_0 + \sum_{k=1}^{\infty} \Psi_k t^{k/2},
\end{align*}
\]

Two different solutions

\[
\sin \Psi_0 = 0 \Rightarrow \text{either } \Psi_0 = 0 \text{ or } \Psi_0 = \pi.
\]

There are no any integration constants in the expansions.
Dificulty of the asymptotics

Back to the main resonance equations

\[
\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = \cos \psi.
\]
Difficult of the asymptotics

Back to the main resonance equations

\[\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = \cos \psi. \]

Power asymptotics

\[\rho(t) = \sqrt{\lambda} t + \sum_{k=0}^{\infty} \rho_k t^{-k/2}, \quad \psi(t) = \psi_0 + \sum_{k=1}^{\infty} \psi_k t^{-k/2}. \]
Back to the main resonance equations

\[
\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = \cos \psi.
\]

Power asymptotics

\[
\rho(t) = \sqrt{\lambda} t + \sum_{k=0}^{\infty} \rho_k t^{-k/2}, \quad \psi(t) = \psi_0 + \sum_{k=1}^{\infty} \psi_k t^{-k/2}.
\]

Two different solutions

\[
\sin \psi_0 = 0 \Rightarrow \text{either } \psi_0 = 0 \text{ or } \psi_0 = \pi.
\]

There are no any integration constants in the expansions.
Asymptotics is a beautiful and very hard task

Two parametric WKB-type asymptotics

\[\rho(t; c, s_0) = \sqrt{\lambda} t + t^{-1/4} \sum_{n=1}^{\infty} t^{-n/8} \rho_n(S; c), \]

\[\psi(t; c, s_0) = \pi + \sum_{n=1}^{\infty} t^{-n/8} \psi_n(S; c), \quad t \to \infty. \]

\[S = (4/5) \sqrt{2\lambda}^{1/4} t^{5/4} + s_{0,1}(c) \ln t + s_0 \]
Asymptotics is a beautiful and very hard task

Two parametric WKB-type asymptotics

\begin{align*}
\rho(t; c, s_0) &= \sqrt{\lambda}t + t^{-1/4} \sum_{n=1}^{\infty} t^{-n/8} \rho_n(S; c), \\
\Psi(t; c, s_0) &= \pi + \sum_{n=1}^{\infty} t^{-n/8} \Psi_n(S; c), \quad t \to \infty.
\end{align*}

\[S = \left(\frac{4}{5}\right)\sqrt{2}\lambda^{1/4} t^{5/4} + s_{0,1}(c) \ln t + s_0 \]

Two integration constants are present in the first corrections

\[\rho_1 = c\mu^{-1} \sin S, \quad \Psi_1 = -c \cos S, \quad (\mu = \sqrt{2}\lambda^{1/4}). \]
Asymptotics is a beautiful and very hard task

Two parametric WKB-type asymptotics

\[
\rho(t; c, s_0) = \sqrt{\lambda} t + t^{-1/4} \sum_{n=1}^{\infty} t^{-n/8} \rho_n(S; c),
\]

\[
\Psi(t; c, s_0) = \pi + \sum_{n=1}^{\infty} t^{-n/8} \psi_n(S; c), \quad t \to \infty.
\]

\[
S = (4/5) \sqrt{2} \lambda^{1/4} t^{5/4} + s_{0,1}(c) \ln t + s_0
\]

Two integration constants are present in the first corrections

\[
\rho_1 = c \mu^{-1} \sin S, \quad \psi_1 = -c \cos S, \quad (\mu = \sqrt{2} \lambda^{1/4}).
\]

Construction of the WKB-asymptotics is very hard. It is the art in some sense (V. Babich)
Difficulty of the asymptotics

Equations of degenerate resonance

\[\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho^2 - \lambda t. \]

There are no any WKB-asymptotics at all.
Difficulty of the asymptotics

Equations of degenerate resonance

\[
\frac{d \rho}{dt} = \sin \psi, \quad \frac{d \psi}{dt} = \rho^2 - \lambda t.
\]

There are no any WKB-asymptotics at all.

Dissipation effect

\[
\frac{d \rho}{dt} = (f_0 + f_1 t) \sin \psi - \gamma \rho, \quad \frac{d \psi}{dt} = \rho^2 - \lambda t.
\]

WKB-asymptotics ???
Difficulty of the asymptotics

Parametric autoresonance equations

\[
\frac{d\rho}{dt} = \rho \sin \Psi, \quad \frac{d\psi}{dt} - \rho + \lambda t = b \cos \Psi.
\]

First correction WKB-asymptotics is known.
Difficulty of the asymptotics

Parametric autoresonance equations

\[\frac{d\rho}{dt} = \rho \sin \psi, \quad \frac{d\psi}{dt} - \rho + \lambda t = b \cos \psi. \]

First correction WKB-asymptotics is known.

Dissipation effect

\[\frac{d\rho}{dt} = \rho \sin \psi - \gamma \rho, \quad \frac{d\psi}{dt} - \rho + \lambda t = b \cos \psi. \]

WKB-asymptotics ???
Stability of the autoresonance

Physicist:
There is only interest in the stable solutions for applications. Those solutions correspond to physically realizable states.
Physicist:

There is only interest in the stable solutions for applications. Those solutions correspond to physically realizable states.

There are some different manner to prove the stability. Asymptotics of general solution gives the exhaustive result. Success depends on the skill of the researcher.
Physicist:

There is only interest in the stable solutions for applications. Those solutions correspond to physically realizable states.

There are some different manner to prove the stability. Asymptotics of general solution gives the exhaustive result. Success depends on the skill of the researcher.

Skill of Lyapunov functions instead of skill of asymptotics

Idea is to prove stability of a single power solution instead the general WKB-asymptotics.
Physicist:

There is only interest in the stable solutions for applications. Those solutions correspond to physically realizable states.

There are some different manner to prove the stability. Asymptotics of general solution gives the exhaustive result. Success depends on the skill of the researcher.

Skill of Lyapunov functions instead of skill of asymptotics

Idea is to prove stability of a single power solution instead the general WKB-asymptotics.

This approach is more preferable for physicists, because it allows to take into account the random perturbation.
Example: Bloch equations

\[\begin{align*}
\frac{d\rho}{dt} &= -t \sin \Psi - \beta_2 \rho, \\
\frac{dz}{dt} &= t \rho \sin \Psi - \beta_1 z \\
\rho \left[\frac{d\psi}{dt} + \lambda t - z \right] &= -t \cos \Psi; \quad (\lambda, \beta_1, \beta_2 = \text{const} > 0).
\end{align*}\]
Example: Bloch equations

\[
\frac{d\rho}{dt} = -t \sin \psi - \beta_2 \rho, \quad \frac{dz}{dt} = t \rho \sin \psi - \beta_1 z
\]

\[
\rho \left[\frac{d\psi}{dt} + \lambda t - z \right] = -t \cos \psi; \quad (\lambda, \beta_1, \beta_2 = \text{const} > 0).
\]

Bad idea is to construct three parametric WKB-asymptotics with growing amplitude.
Example: Bloch equations

\[
\frac{d\rho}{dt} = -t \sin \psi - \beta_2 \rho, \quad \frac{dz}{dt} = t \rho \sin \psi - \beta_1 z
\]

\[
\rho \left[\frac{d\psi}{dt} + \lambda t - z \right] = -t \cos \psi; \quad (\lambda, \beta_1, \beta_2 = \text{const} > 0).
\]

Bad idea is to construct three parametric WKB-asymptotics with growing amplitude.

Alternative approach is to prove the stability of a single solution with growing amplitude.
Averaged Bloch equations

\[
\begin{align*}
\frac{d\rho}{dt} &= -t \sin \psi - \beta_2 \rho, \\
\frac{dz}{dt} &= t \rho \sin \psi - \beta_1 z \\
\rho \left[\frac{d\psi}{dt} + \lambda t - z \right] &= -t \cos \psi; \quad (\lambda, \beta_1, \beta_2 = \text{const} > 0).
\end{align*}
\]

Power asymptotics

\[
\begin{align*}
\rho(t) &= r_1 \sqrt{t} + r_0 + \sum_{n=1}^{\infty} \rho_n t^{-n/2}, \\
z(t) &= \lambda t + z_1 \sqrt{t} + z_0 + \sum_{n=1}^{\infty} z_n t^{-n/2}, \\
\psi(t) &= \psi_0 + \sum_{n=1}^{\infty} \psi_n t^{-n/2}.
\end{align*}
\]
Power asymptotics

\[\rho(t) = \rho_1 \sqrt{t} + r_0 + \sum_{n=1}^{\infty} \rho_{-n} t^{-n/2}, \]

\[z(t) = \lambda t + z_1 \sqrt{t} + z_0 + \sum_{n=1}^{\infty} z_{-n} t^{-n/2}, \]

\[\psi(t) = \psi_0 + \sum_{n=1}^{\infty} \psi_{-n} t^{-n/2}. \]

Leading order term

\[\sin \psi_0 = 0 \Rightarrow \psi_0 = \pi, \text{ or } \psi_0 = 0 \Rightarrow \text{ There are two asymptotic solutions with growing amplitude.} \]
Power asymptotics

\[
\rho(t) = \rho_1 \sqrt{t} + r_0 + \sum_{n=1}^{\infty} \rho_{-n} t^{-n/2},
\]

\[
z(t) = \lambda t + z_1 \sqrt{t} + z_0 + \sum_{n=1}^{\infty} z_{-n} t^{-n/2},
\]

\[
\Psi(t) = \Psi_0 + \sum_{n=1}^{\infty} \Psi_{-n} t^{-n/2}.
\]

Leading order term

\[
\sin \Psi_0 = 0 \Rightarrow \Psi_0 = \pi, \text{ or } \Psi_0 = 0 \Rightarrow \text{There are two asymptotic solutions with growing amplitude.}
\]

What solution is stable?
Main result

\[
\rho(t) = \rho_1 \sqrt{t} + r_0 + \sum_{n=1}^{\infty} \rho_{-n} t^{-n/2},
\]

\[
z(t) = \lambda t + z_1 \sqrt{t} + z_0 + \sum_{n=1}^{\infty} z_{-n} t^{-n/2},
\]

\[
\psi(t) = \psi_0 + \sum_{n=1}^{\infty} \psi_{-n} t^{-n/2}.
\]

Denote the solution \(R_0(t), Z_0(t), \psi_0(t)\) which is determined by the leading order term \(\psi_0 = 0\).
Main result

\[\rho(t) = \rho_1 \sqrt{t} + r_0 + \sum_{n=1}^{\infty} \rho_{-n} t^{-n/2}, \]

\[z(t) = \lambda t + z_1 \sqrt{t} + z_0 + \sum_{n=1}^{\infty} z_{-n} t^{-n/2}, \]

\[\psi(t) = \psi_0 + \sum_{n=1}^{\infty} \psi_{-n} t^{-n/2}. \]

Denote the solution \(R_0(t), Z_0(t), \psi_0(t) \) which is determined by the leading order term \(\psi_0 = 0 \).

Theorem

If \(\beta_1, \beta_2 > 0 \) then the solution \(R_0(t), Z_0(t), \psi_0(t) \) is asymptotically stable as \(t \to \infty \).
Main result

Construction of a Lyapunov’s function for the remainder problem is the idea of the proof.
Main result

Construction of a Lyapunov’s function for the remainder problem is the idea of the proof.

References

Main result

Construction of a Lyapunov’s function for the remainder problem is the idea of the proof.

References

Future: Stability of the power solutions for different autoresonance models.
Main result

Construction of a Lyapunov’s function for the remainder problem is the idea of the proof.

References

Future: Stability of the power solutions for different autoresonance models.

References

Main result

Construction of a Lyapunov’s function for the remainder problem is the idea of the proof.

References

Future: Stability of the power solutions for different autoresonance models.

References

Future activity
Stability of autoresonance models under random perturbation.
Initial stage of autoresonance. Zero dissipation $\beta = 0$.

Constant driver amplitude: $f_1 = 0$. Autoresonance solution.
ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 10-01-00186-a, no. 11-02-97003-p).

THANK YOU FOR ATTENTION!