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Statement of the problem

What about equations?

There are some model systems of differential equations.
The equations are nonlinear and nonautonomous.
They are often encountered as mathematical models in
different physical problems.

Almost all systems are nonintegrable.

Asymptotics?
There are not any small parameters in the model equations.
We are interesting for asymptotics with time at infinity.

Object
The solution with increasing amplitude ρ(t)→∞ as t →∞,
which is stable.
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Initial stage of autoresonance. Zero dissipation β = 0.

Constant driver amplitude: f1 = 0. Autoresonance solution.

Figure:
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Model systems. First example.

Perturbed pendulum

dρ
dt

= sin Ψ,
dΨ

dt
= ρ− λt , λ = const 6= 0.

d2Ψ

dt2 = sin Ψ− λ.

Phase portrait on the (Ψ, Ψ̇) plain under different λ

Figure:
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Model systems. First example.

Perturbed dissipationless pendulum

dρ
dt

= sin Ψ,
dΨ

dt
= ρ− λt .

Dissipation effect

dρ
dt

= sin Ψ− γρ, dΨ

dt
= ρ− λt .

λ, γ = const > 0

Growing pumping & dissipation effect

dρ
dt

= (f0 + f1t) sin Ψ− γρ, dΨ

dt
= ρ− λt , (f0, f1 = const).
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Model systems. Second example.

Perturbed pendulum

dρ
dt

= sin Ψ,
dΨ

dt
= ρ− λt .

Main autoresonance equations

dρ
dt

= sin Ψ, ρ
[dΨ

dt
− ρ2 + λt

]
= b cos Ψ, (b = const).

Dissipation effect

dρ
dt

= (f0 + f1t) sin Ψ− γρ, ρ
[dΨ

dt
− ρ2 + λt

]
= b cos Ψ.
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What is the autoresonance

d2x
dt2 + sin x = 0

Phase portrait of the unperturbed pendulum

Figure: Pendulum trajectories on the (x , ẋ) plane
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Problem of the perturbed pendulum dynamic

Is it possible to reach large amplitude oscillation x ≈ 1 starting
near equilibrium x = ẋ = 0 and using a weak pumping
0 < ε� 1 under small dissipation 0 < Γ� 1?

Naive resonance perturbation of the pendulum

d2x
dt2 + sin x = −Γ

dx
dt

+ ε cos t .
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near equilibrium x = ẋ = 0 and using a weak pumping
0 < ε� 1 under small dissipation 0 < Γ� 1?

Naive resonance perturbation of the pendulum

d2x
dt2 + sin x = −Γ

dx
dt

+ ε cos t .



Statement of problem Examples of model systems Autoresonance Numerical simulation Asymptotic analysis Effect of dissipation Art of asymptotics Art of stability

Problem of the perturbed pendulum dynamic

Is it possible to reach large amplitude oscillation x ≈ 1 starting
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Problem of the perturbed pendulum dynamic

Specific of the nonlinear oscillator

The unperturbed pendulum is not isochronous.

This property prevents the growing of the amplitude under
constant driver frequency.

Advanced perturbation of the pendulum

d2x
dt2 + sin x = −Γ

dx
dt

+ ε(1 + δt) cos(t − αt2).

Perturbed equation is not integrable.

Solution is analyzed by either numerical simulation or
asymptotic methods.
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Pendulum under oscillating pumping. Simulation.

Equation

d2x
dt2 + sin x = −Γ

dx
dt

+ ε(1 + δt) cos(t − αt2).

Small parameters

ε = 10−4, Γ = 0÷ 10−4, δ = 0÷ 10−4, α = 0÷ 3 · 10−6.

Input: Small initial data

[ẋ2 + x2]t=0 ≤ ε2/3.

Output: Energy

E =
1
2

ẋ2(t) + 1− cos x(t), 0 < t ≤ O(ε−1).
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[ẋ2 + x2]t=0 ≤ ε2/3.

Output: Energy

E =
1
2
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Nonlinear resonance – driver frequency is constant: α = 0

Constant driver amplitude.

d2x
dt2 + sin x = −Γ

dx
dt

+ ε cos t .
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Nonlinear resonance – driver frequency is constant: α = 0

Constant driver amplitude. Zero dissipation Γ = 0

Figure:
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Nonlinear resonance – driver frequency is constant: α = 0

Constant driver amplitude. Adiabatic approximation.

Figure:
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Nonlinear resonance – driver frequency is constant: α = 0

Increasing driver amplitude ε+ ε2t .

d2x
dt2 + sin x = −Γ

dx
dt

+ ε(1 + εt) cos t .
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Nonlinear resonance – driver frequency is constant: α = 0

Increasing driver amplitude ε+ ε2t . Zero dissipation Γ = 0

Figure:
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Nonlinear resonance – driver frequency is constant: α = 0

Increasing driver ε+ ε2t . Effect of dissipation Γ = ε.

Figure:
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Nonlinear resonance – driver frequency is constant: α = 0

Increasing driver. Adiabatic approximation.

Figure:
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How to get large energy under weak pumping?

Conclusion from simulation.
It is impossible to get large energy by using a constant driver
frequency.

Idea is
To vary the driver frequency in order to keep the resonance
with the free frequency while the energy begins to grow.

References
V.I.Veksler. Dokl. Akad. Naur SSSR. 43 (1944), 44 (1944)

E.M.McMillan. Phys. Rev. 68 (1945), 70 (1946)
L.Friedland. http://www.phys.huji.ac.il/ lazar/, 1990–2011
L.Kalyakin. Russ. Math. Surv. 2008
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Simulation the autoresonance. Zero dissipation.

Pendulum under oscillating pumping

d2x
dt2 + sin x = ε cos(t − αt2).

Variation of the pumping frequency as α > 0.
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Dissipationless systems. Decreasing driver frequency: 1−6 ·10−6t

Constant driver amplitude ε = 10−4. Two type of solutions.

Figure:
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Dissipationless systems. Decreasing driver frequency: 1−6 ·10−6t

Constant driver amplitude ε = 10−4. Initial stage.

Figure:
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Dissipationless systems. Decreasing driver frequency: 1−6 ·10−6t

Constant driver amplitude ε = 10−4. Long times.

Figure:
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Dissipation systems.

d2x
dt2 + sin x = −Γ

dx
dt

+ ε cos(t − αt2), Γ ≈ ε > 0.

Is autoresonance possible in dissipation system?
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Dissipation systems. Decreasing driver frequency: 1− 6 · 10−6t

Constant driver amplitude. Effect of dissipation Γ = ε.

Figure:
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How to get large energy in dissipation system under Γ > 0

The result from simulation: Dissipation suppresses oscillations
and all solutions vanish with time at infinity.

Idea is
To enlarge the driver amplitude in order to both
compensate dissipation losses of energy and keep system
in the autoresonant mode.

d2x
dt2 + sin x = −Γ

dx
dt

+ ε(1 + δt) cos(t − αt2), 0 < Γ, ε, δ, α� 1.

References
L.A.Kalyakin, M.A. Shamsutdinov. Autoresonant asymptotics in
the oscillating system with weak dissipation . TMPh. (2009),
160, 1, p.960-967.
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The result from simulation: Dissipation suppresses oscillations
and all solutions vanish with time at infinity.

Idea is
To enlarge the driver amplitude in order to both
compensate dissipation losses of energy and keep system
in the autoresonant mode.
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Decreasing driver frequency: 1− 6 · 10−6t

Increasing driver amplitude: ε+ 10−5t . Zero dissipation.

Figure:
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Decreasing driver frequency: 1− 6 · 10−6t

Increasing driver amplitude: ε+ 10−4t . Dissipation effect.

Figure:
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The problem of separation

d2x
dt2 + sin x = −Γ

dx
dt

+ ε(1 + δt) cos(t − αt2), 0 < Γ, ε, δ, α� 1.

Conclusion from simulations
The autoresonance phenomenon depends on the initial data.

Main problem in autoresonance theory
How to separate the different types of solutions?
Suggest: Analysis on the initial stage.
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Analytical results for pendulum

An example of nonlinear oscillator under perturbation

d2x
dt2 + sin x = −Γ

dx
dt

+ ε(1 + δt) cos(t − αt2), 0 < ε� 1.

Anzatz. Asymptotic approximation on the initial stage

x(t ; ε) = ε1/3 1
2
ρ(τ) cos(t − αt2 −Ψ(τ)) +O(ε2/3); τ = ε2/3t .

Result of averaging

dρ
dτ

= f (τ) sin Ψ− γρ, ρ
[dΨ

dτ
+ λτ − ρ2

]
= f (τ) cos Ψ.
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Asymptotic approximation on the initial stage

Original equation

d2x
dt2 + sin x = −Γ

dx
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+ ε(1 + δt) cos(t − αt2), 0 < ε� 1.

Result of averaging

dρ
dτ
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[dΨ

dτ
+ λτ − ρ2

]
= f (τ) cos Ψ.

f (τ) = 1 + (δ/ε2/3)τ, τ = ε2/3t
λ = 2α/ε4/3

γ = Γ/2ε.
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Asymptotic approximation on the initial stage

Original equation
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Asymptotic approximation on the initial stage

Anzatz on the initial stage

x(t ; ε) = ε1/3 1
2
ρ(τ) cos(t − αt2 −Ψ(τ)) +O(ε2/3); τ = ε2/3t .

Reduced equations

dρ
dτ

= f (τ) sin Ψ− γρ, ρ
[dΨ

dτ
+ λτ − ρ2

]
= f (τ) cos Ψ.

Problem on autoresonance
Is there any solution with increasing amplitude: ρ(τ)→∞
as τ →∞?
How many solutions of that type exist?
Are they stable?
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Analytical results. Dissipationless system.

dρ
dτ

= f sin Ψ, ρ
[dΨ

dτ
+ λτ − ρ2

]
= f cos Ψ, λ = const > 0.

Theorem
Autoresonance solutions.
Let be γ = 0, f = const. If λ > 0 then there exist
two-parametric solution, which has the increasing
amplitude ρ(τ) =

√
λτ +O(τ−3/8), τ →∞.

Nonautoresonance solutions.
Let be γ = 0, f = const. There always exist two-parametric
solution, which has the bounded amplitude ρ(τ) = O(1). If
λ < 0 then the amplitude of any solution is bounded.

L.A.Kalyakin, Russian Math. Surveys. 63, 5 (2008). 3-72.
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Separation of the autoresonance solutions

dρ
dτ

= f sin Ψ, ρ
[dΨ

dτ
+ λτ − ρ2

]
= f cos Ψ, f , λ = const > 0.

Main problem in autoresonance theory

How to separate the different types of solutions?

The problem was solved by A.Neishtadt in adiabatic
approximation as λ→ 0. That means a very slow variation
of the pumping frequency.
In general case the problem is not solved.
There are some numerical results.
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Separation of the autoresonance solutions

The phase plain at the initial moment (R.Garifullin, 2003)

Figure:
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Dissipation systems.

d2x
dt2 + sin x = −Γ

dx
dt

+ ε cos(t − αt2), Γ ≈ ε > 0.

Is autoresonance possible in dissipation system?
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Dissipation system under a constant pumping amplitude

Main resonance equations

dρ
dτ

= f (τ) sin Ψ− γρ, ρ
[dΨ

dτ
+ λτ − ρ2

]
= g(τ) cos Ψ, γ, λ > 0.

Theorem.
Let be f = const. If γ > 0 then the amplitude of each solution is
bounded.

Corollary.
Autoresonance phenomenon can not be in any dissipation
system under constant driver amplitude.
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Constant pumping amplitude. Damping under dissipation

Strong dissipation γ = 1

Figure:
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Constant pumping amplitude. Damping under dissipation

Weak dissipation 0 < γ � 1

Figure:
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Resonance under dissipation Γ > 0. Idea.

In order to compensate dissipation losses of energy and to
keep system in the autoresonant mode we offer to increase
slowly the pumping amplitude:

d2x
dt2 + sin x = −Γ

dx
dt

+ ε(1 + δt) cos(t − αt2), δ ≈ ε2/3.

Under f1 = δ/ε2/3, λ = 2α/ε4/3, γ = Γ/2ε and slow time
τ = ε2/3t :

Averaged equations

dρ
dτ

= −(1 + f1τ) sin Ψ− γρ, ρ
[dΨ

dτ
+ λτ − ρ2

]
= (1 + f1τ) cos Ψ.

References: L.A.Kalyakin, M.A. Shamsutdinov, Theor. Math.
Phys. (2009), 160, 1.
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Dissipation system under the varying pumping amplitude

Main resonance equations

dρ
dτ

= −(f0 + f1τ) sin Ψ− γρ, ρ
[dΨ

dτ
+ λτ − ρ2

]
= (f0 + f1τ) cos Ψ.

Theorem
Autoresonance solutions. Let be γ > 0 and f1 6= 0. If λ > 0
then there exists two-parametric solution, which has the
increasing amplitude ρ(τ) =

√
λτ [1 + o(1))], τ →∞.

Nonautoresonance solutions.
Let be γ > 0. There always exists two-parametric solution,
which has the bounded amplitude ρ(τ) = O(1).
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Autoresonance and dissipation

Increase of the driver amplitude: f1 = 0.25.
Nonautoresonance.

Figure:
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Autoresonance and dissipation

Increase of the driver amplitude: f1 = 0.3. Autoresonance.

Figure:
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Autoresonance and dissipation

Increase of the driver amplitude: f1 = 0.35. Autoresonance.

Figure:
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Conclusions for the pendulum

We proved the existence of the autoresonance
phenomenon in the oscillating systems which has a small
dissipation.

Increase of the small driver amplitude is necessary for
existence of this phenomenon.

Increase of the output amplitude is determined by variation
of the driver frequency.

Ensemble of the autoresonance solutions depends on the
rate of growth of the driver amplitude.
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Dificulty of the asymptotics

Back to the main resonance equations

dρ
dt

= sin Ψ, ρ
[dΨ

dt
− ρ2 + λt

]
= cos Ψ.

Power asymptotics

ρ(t) =
√
λt +

∞∑
k=0

ρk t−k/2, Ψ(t) = Ψ0 +
∞∑

k=1

Ψk t−k/2.

Two different solutions
sin Ψ0 = 0 ⇒ either Ψ0 = 0 or Ψ0 = π.
There are no any integration constants in the expansions.
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Asymptotics is a beautiful and very hard task

Two parametric WKB-type asymptotics

ρ(t ; c, s0) =
√
λt + t−1/4

∞∑
n=1

t−n/8ρn(S; c),

Ψ(t ; c, s0) = π +
∞∑

n=1

t−n/8Ψn(S; c), t →∞.

S = (4/5)
√

2λ1/4t5/4 + s0,1(c) ln t + s0

Two integration constants are present in the first
corrections

ρ1 = cµ−1 sin S, Ψ1 = −c cos S, (µ =
√

2λ1/4) .

Construction of the WKB-asymptotics is very hard. It is the art
in some sense (V. Babich)
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Difficulty of the asymptotics

Equations of degenerate resonance

dρ
dt

= sin Ψ,
dΨ

dt
= ρ2 − λt .

There are no any WKB-asymptotics at all.

Dissipation effect

dρ
dt

= (f0 + f1t) sin Ψ− γρ, dΨ

dt
= ρ2 − λt .

WKB-asymptotics ???
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Difficulty of the asymptotics

Parametric autoresonance equations

dρ
dt

= ρ sin Ψ,
dΨ

dt
− ρ+ λt = b cos Ψ.

First correction WKB-asymptotics is known.
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dρ
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Stability of the autoresonance

Physicist:
There is only interest in the stable solutions for applications.
Those solutions correspond to physically realizable states.

There are some different manner to prove the stability.
Asymptotics of general solution gives the exhaustive result.
Success depends on the skill of the researcher.

Skill of Lyapunov functions instead of skill of asymptotics
Idea is to prove stability of a single power solution instead the
general WKB-asymptotics.

This approach is more preferable for physicists, because it
allows to take into account the random perturbation.
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Example: Bloch equations

dρ
dt

= −t sin Ψ− β2ρ,
dz
dt

= t ρ sin Ψ− β1z

ρ
[dΨ

dt
+ λt − z

]
= −t cos Ψ; (λ, β1, β2 = const > 0).

Bad idea is to construct three parametric WKB-asymptotics
with growing amplitude.

Alternative approach is to prove the stability of a single solution
with growing amplitude.
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Averaged Bloch equations

dρ
dt

= −t sin Ψ− β2ρ,
dz
dt

= t ρ sin Ψ− β1z

ρ
[dΨ

dt
+ λt − z

]
= −t cos Ψ; (λ, β1, β2 = const > 0).

Power asymptotics

ρ(t) = r1
√

t + r0 +
∞∑

n=1

ρ−nt−n/2,

z(t) = λt + z1
√

t + z0 +
∞∑

n=1

z−nt−n/2,

Ψ(t) = Ψ0 +
∞∑

n=1

Ψ−nt−n/2.
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Power asymptotics

Power asymptotics
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√

t + z0 +
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n=1

z−nt−n/2,

Ψ(t) = Ψ0 +
∞∑

n=1

Ψ−nt−n/2.

Leading order term
sin Ψ0 = 0 ⇒ Ψ0 = π, or Ψ0 = 0 ⇒ There are two asymptotic
solutions with growing amplitude.

What solution is stable?
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Main result

ρ(t) = ρ1
√

t + r0 +
∞∑

n=1

ρ−nt−n/2,

z(t) = λt + z1
√

t + z0 +
∞∑

n=1

z−nt−n/2,

Ψ(t) = Ψ0 +
∞∑

n=1

Ψ−nt−n/2.

Denote the solution R0(t), Z0(t). Ψ0(t) which is determined by
the leading order term Ψ0 = 0.

Theorem
If β1, β2 > 0 then the solution R0(t), Z0(t). Ψ0(t) is
asymptotically stable as t →∞.
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Main result

Construction of a Lyapunov’s function for the remainder
problem is the idea of the proof.

References
L. A. Kalyakin, O.A.Sultanov, M.A.Shamsutdinov. Theoretical
and Mathematical Physics. (2011), 167, 3.

Future: Stability of the power solutions for different
autoresonance models.

References
L. A. Kalyakin, O.A.Sultanov. Differential equations, 2012,
to be appear.

Future activity
Stability of autoresonance models under random perturbation
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Initial stage of autoresonance. Zero dissipation β = 0.

Constant driver amplitude: f1 = 0. Autoresonance solution.

Figure:
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