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I propose the transparent geometric model that makes possible to

present the set of the rational Darboux coordinates on the phase space

of the Isomonodromic Deformation equation.

In the foundation of the construction lie an observation that for

the matrix from the orbit the projections of the kernel and image to

the corresponding complementary coordinate subspaces are conjugated

each other with respect to the canonical structure of the orbit.

It is known that the famous Painlev�e VI equation has surprisingly rich
group of birational symmetries. The equation describes isomonodromic de-
formations of 2× 2 Fuchsian system with four poles.

The generic case of N × N matrices with di�erent eigenvalues has the
similar birational symmetries. What about a general case? Are there the same
birational symmetries in the degenerated case of low-dimensional orbits with
multiple eigenvalues, or the situation is similar to the di�erence between the
twisted and the plane cubics, where the �rst one is rational and the second
one is not?

I will show that the phase spaces of the Isomonodromic Deformation
equations have the same structure of the birational symplectic manifold in the
degenerated cases too, at least if there is enough number of one-dimensional
eigenspaces. The possibility to de�ne the rational canonical variables on the
same system in several ways, like the permutations of the basic vectors or
renumbering the poles, is the source of the birational symmetries in question.
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Let us consider the deformation of the Fuchs equation

d

dz
Ψ =

M∑
k=0

A(k)

z − zk
Ψ; A(k) ∈ sl(N,C); z, zk ∈ C. (1)

It is known that the isomonodromic deformation of this equation may
be associated with some Hamiltonian system de�ned on the space that we
denote byOJ1×OJ2×· · ·×OJM//PGL(N,C). This space is the quotient of the
product of several (co)adjoint orbits OJk := ∪g∈PGL(N,C)gJ

(k)g−1 3 A(k) over
the diagonal (co)adjoint action of GL(N,C) intersected by the momentum
level Σ :=

∑M
k=1A

(k) = 0.

Let us built a set of the canonical coordinates on an orbit �rst. The
construction is based on the possibility to project a linear transformation
A ∈ EndV along its eigenspace ker(A − λ1I) 6= 0 to EndV/ ker(A − λ1I).
The Jordan structure of the projection is de�ned by the Jordan structure of
A, all the Jordan chains corresponding to λ1 become one unit shorter. The
�ber of the projection is the linear symplectic space, so after the introducing
a basis in V we get the symplectic �beration of the orbit. The iteration of
the construction gives the birational symplectomorphism between the orbit
OJ and the linear symplectic space with the natural Darboux coordinates.

To parameterize the Isomonodromic Deformation phase space OJ(0) ×
OJ(1) × · · · × OJ(M)//PGL(N,C) it is possible to construct a basis e :=
e1, . . . , eN rigidly connected with the set of A(0), . . . A(M) := Ā:

e(g−1Āg) = e(Ā)g.

It is equivalent to the factorization with respect to the diagonal adjoint action
of GL(N,C). The problem is to control the momentum map Σ =

∑M
k=0 A

(k).

I will present the iteration procedure for the construction of the basis
e with the necessary properties. The construction is based on the following
observation.

Let we project each of the transformations A(k) ∈ EndV along its own

�xed in someway one-dimensional subspace K
(k)
1 of the eigenspace ker(A(k)−

λ
(k)
1 ) ⊃ K

(k)
1 on one hyper-subspace V1 ⊂ V , dimV1 = dimV −1. Denote such

a projections by A
(k)
1 . Consider the di�erence σ1 between two transformations

of V1. The �rst one is the projection back to V1 along any �xed direction
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e1
1 of the constriction Σ|V1 . The second one is the sum of the projections∑M
k=1 A

(k)
1 = Σ1. The observation is: the transformation σ1 ∈ EndV1 depends

on the directions ker(A(k) − λ(1)
1 I), im(A(k) − λ(1)

1 I) and e1
1 only.

0 Examples

0.1 The 2× 2 case that is the Painlev�e VI-case.

Let us denote

A
(
p
q
| − λλ

)
:=

(
1 0
p 1

)(
−λ q
0 λ

)(
1 0
−p 1

)
=

(
−(λ+ pq) q
−p(pq + 2λ) pq + λ

)
.

We put A(1) = A
(
p
q
| − λλ

)
, A(0) = A

(
z
1
| − µµ

)
, and

A(2) =

(
−η y
0 η

)
, A(3) =

(
−ν 0
x ν

)
.

It is evident that the symplectic form ω = ω(1) + ω(2) + ω(3) + ω(0) on the
quotient space is equal to dp ∧ dq, because ω(2) = ω(3) = ω(0) = 0. The
momentum level-set equation

∑
k A

(k) = 0 can be trivially solved because
x, y and z are summands of the anti-diagonal and diagonal matrix elements
of the momentum

∑
k A

(k). We get:

A(1) =

(
−(λ+ pq) q
−p(pq + 2λ) pq + λ

)
, A(0) =

(
pq + σ 1

−(pq + σ + µ)(pq + σ − µ) −(pq + σ)

)
A(2) =

(
−η −(q + 1)
0 η

)
, A(3) =

(
−ν 0

p2q(q + 1) + 2p(qσ + λ) + σ2 − µ2 ν

)
,

where by σ we denote the sum of all parameters (eigenvalues): σ = λ + µ +
ν + η.

We can see that tr(A(1) + tA(0))A(3) =

= p2q(q+1)(q+t)+2pq(q+1)(q+t)

(
λ

q
+
σ − ν − λ
q + 1

+
ν

q + t

)
+(q+t)(σ2−µ2)

It is the Hamiltonian H(−p,−q, t)t(t − 1) = tr(A(1) + tA(0))A(3) of the
Painlev�e VI equation with the parameters

α = 2((2λ− σ)2 + σ2 − µ2), β = 2(µ+ η)2, γ = 2λ2, δ = 2(ν − 1/2)2.

Painlev�e VI equation is satis�ed by the function −q(t).
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0.2 The generic 3× 3 case.

If we follow the notations of the Painlev�e VI case strictly, we get the Hamiltonian
qubical in variables pi's. To my taste the following choice of the notations is
a little bit more observable and symmetric. . .

Let us denote A
(
q1 q2 q3

p1 p2 p3
|λ1λ2λ3

)
=

=

 1 0 0
q1 1 0
q2 0 1

 λ1 p1 p2

0
0
A2×2

 1 0 0
−q1 1 0
−q2 0 1

 ,

where

A2×2 =

(
1 0
q3 1

)(
λ2 p3

0 λ3

)(
1 0
−q3 1

)
=

(
λ2 − p3q3 p3

−(p3q3 − λ2 + λ3)q3 λ3 + p3q3

)
Let us split A on the upper-, lower-, and diagonal parts, and introduce

three 3-dimensional vector-columns:

A⇑ :=

 p1

p2

p3 + p2q1

 =:

 (A⇑)1

(A⇑)2

(A⇑)3

 , A∆ :=

 −q1p1 − q2p2

q1p1 − q3p3

q2p2 + q3p3

 =:

 (A∆)1

(A∆)2

(A∆)3



Aλ⇓ :=

 −p1q
2
1 − p2q1q2 + p3(q1q3 − q2) + q1(λ1 − λ2)

−p1q1q2 − p2q
2
2 + p3q3(q1q3 − q2) + q1q3(λ3 − λ2) + q2(λ1 − λ3)

p1q2 − p3q
2
3 + q3(λ2 − λ3)


=:

 (A⇓)1

(A⇓)2

(A⇓)3



A
(
q1 q2 q3

p1 p2 p3
|λ1λ2λ3

)
=

 (A∆)1 + λ1 (A⇑)1 (A⇑)2

(Aλ⇓)1 (A∆)2 + λ2 (A⇑)3

(Aλ⇓)2 (Aλ⇓)3 (A∆)3 + λ3


The standard pairing trAB has the representation

trAB =< Aλ⇓, B⇑ > + < A⇑, B
µ
⇓ > + < A∆ + ~λ,B∆ + ~µ >,
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where matrix B from the orbit of diag(µ1µ2µ3) is splited in the same way as
A is, and < ,> is the standard Euclidean scalar product on C3.

Consider four matrices A(1), A(2), A(3) and A(0) from the orbits of J (1) =
diag(λ1λ2λ3), J (2) = diag(η1η2η3), J (3) = diag(ν1ν2ν3) and J (0) = diag(µ1µ2µ3)
correspondingly. We assume that

∑
i λi =

∑
i ηi =

∑
i νi =

∑
i µi = 0.

In the constructed on the lecture frame of reference,A(2) is upper-triangular,
A(3) is lower-triangular andA(0) has the �xed eigenvector (111)T corresponding
to µ1.

The symplectic form on the quotient space is ω =
∑3

i=0 dpi ∧ dqi, where
functions p1, q1, p2, q2, p3, q3 parameterize the orbitOJ(1) and p0, q0 parameterize
the projection of OJ(0) on the two-dimensional orbit of diag(µ2, µ3) ∈ gl(2).

We denote A(1) and A(0) by A+ diag(λ1λ2λ3) and B + diag(µ1µ2µ3):

A(1) = A
(
q1 q2 q3

p1 p2 p3
|λ1λ2λ3

)
=: A+ diag(λ1λ2λ3),

A(0) = A
(

1 1 q0

z1 z2 p0
|µ1µ2µ3

)
=: B + diag(µ1µ2µ3).

Several more notations:

A(2) =

 η1 y1 y2

0 η2 y3

0 0 η3

 , A(3) =

 ν1 0 0
x1 ν2 0
x2 x3 ν3

 , ~y =

 y1

y2

y3

 , ~x =

 x1

x2

x3


~σ = ~λ+ ~η + ~ν + ~µ =

 σ1

σ2

σ3

 , σ1 = −(σ2 + σ3),

where vectors ~λ, ~η, ~ν and ~µ are collected from the corresponding eigenvalues.

Let us solve the momentum-level equation
∑

k A
(k) = 0 now.

Consider the diagonal part of the momentum-level equation �rst. It will
be satis�ed if we �x the values of z1 and z2:

A∆+B∆+~σ = 0⇔ z1 = q0p0−q1p1+q3p3−σ2, z2 = −(q0p0+q2p2+q3p3+σ3).

We satisfy upper- and lower- triangular parts of the 3 × 3-matrix equation∑
k A

(k) = 0 using ~x and ~y:

−~x = Bµ
⇓ + Aλ⇓, −~y = A⇑ +B⇑,
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where B is calculated using z1 and z2: B + diag(µ1µ2µ3) =

= A
(

1 1 q0

q0p0 − q1p1 + q3p3 − σ2 −(q0p0 + q2p2 + q3p3 + σ3) p0
|µ1µ2µ3

)
.

To get the Hamiltonian we have to calculate tr(A(1)t+A(0))A(3) := H. In

our notations it is < A⇑t+B⇑, ~x > + < A∆t+~λt+B∆ +~µ, ~ν >, consequently

H = − < A⇑t+B⇑, A
λ
⇓ +Bµ

⇓ > +(t− 1) < A∆, ~ν > +constt.

We use tA∆ +B∆ = tA∆ − A∆ − ~σ = (t− 1)A∆ − ~σ here.

< A∆, ν >= (2ν2 + ν3)p1q1 + (ν2 + 2ν3)p2q2 + (ν3 − ν2)p3q3 + const

A⇑t+B⇑ =

 p0q0 − p1(q1 − t) + p3q3 − σ2

−p0q0 − p2(q2 − t)− p3q3 − σ3

−p0(q0 − 1)− p2(q2 − q1t)− p3(q3 − t)− σ3

 .

To �nish the calculations we have to multiply this A⇑t+B⇑ on A
λ
⇓ +Bµ

⇓ :

(Aλ⇓ +Bµ
⇓)1 = p0(q0 − 1) + q1p1(1− q1) + q2p2(1− q1) + p3(q1q3 − q2) +

+q1(λ1 − λ2) + σ2 + σ3 + µ1 − µ2

(Aλ⇓ +Bµ
⇓)2 = q0q0(q0 − 1) + p1q1(1− q2) + p2q2(1− q2) + p3q3(q1q3 − q2) +

+q1q3(λ3 − λ2) + q0(µ3 − µ2) + q2(λ1 − λ3) + σ2 + σ3 + µ1 − µ3

(Aλ⇓ +Bµ
⇓)3 = −p0q0(q0 − 1) + p1(−q1 + q2) + p3q3(−q3 + 1) +

+q0(µ2 − µ3) + q3(λ2 − λ3)− σ2

So, in the generic 3 × 3 case the Isomonodromic Deformation equations

are the Euler-Lagrange equations for

dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3 + dp0 ∧ dq0 − dH ∧
dt

t(1− t)
,
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where H =

= (−p0q0 + p1(q1 − t)− p3q3 + σ2)(p0(q0 − 1) + p1q1(1− q1) + p2q2(1− q1) +

+p3(q1q3 − q2) + q1(λ1 − λ2) + σ2 + σ3 + µ1 − µ2) +

+(p0q0 + p2(q2 − t) + p3q3 − σ3)(p0q0(q0 − 1) + p1q1(1− q2) + p2q2(1− q2) +

+p3q3(q1q3 − q2) + q1q3(λ3 − λ2) + q0(µ3 − µ2) + q2(λ1 − λ3) + σ2 + σ3 + µ1 − µ3) +

+(p0(q0 − 1) + p2(q2 − q1t) + p3(q3 − t) + σ3)(p0q0(q0 − 1)− p1(−q1 + q2) +

+p3q3(q3 − 1) + +q0(µ2 − µ3) + q3(λ2 − λ3)− σ2) +

+(t− 1)((2ν2 + ν3)q1p1 + (ν2 + 2ν3)q2p2 + (ν3 − ν2)q3p3).

We can see that polynomial H(p, q, t) is linear in t and quadratic with
respect to p-variables:

3∑
i,j=0

PIIij (q)pipj + 2
3∑

k=0

PIk (q, λµνη)pk + P0(q, λµνη).

All P-s are polynomials linear in t. The constant term P0 is quadratic with
respect to parameters λi, µi, νi, ηi, PI is linear with respect to the parameters
and the quadratic therm PIIij pipj does not depend on the parameters.


