Maciej Dunajski

Clare College
and
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Mercator’s navigation

- **Mercator 1569.** Rhumb lines - not the shortest, but easy to follow.
Mercator’s navigation

- **Mercator 1569.** Rhumb lines - not the shortest, but easy to follow.

- Mercator paths are unparametrised geodesics = images of great circles on a sphere.
A problem of Roger Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?
A problem of Roger Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: $y'' = F(x, y, y')$. (Douglas 1936).

Unparametrised geodesics of affine connection:

$\frac{\partial}{\partial y'} F^{\alpha} = 0$

Levi–Civita connection of $g = E dx^2 + 2 F dx dy + G dy^2$?

Bryant, MD, Eastwood (J. Diff. Geom 2009). Solution to the Liouville's problem: Necessary and sufficient conditions for a family of paths to extremize a distance.

Twistor theory

Twistor space

Point

O(1) curve

Geodesic

U
A problem of Roger Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: \(y'' = F(x, y, y') \). (Douglas 1936).
- Unparametrised geodesics of affine connection: \(\partial^4 F / \partial (y')^4 = 0 \)
Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: $y'' = F(x, y, y')$. (Douglas 1936).
 - Unparametrised geodesics of affine connection: $\frac{\partial^4 F}{\partial (y')^4} = 0$
 - Levi–Civita connection of $g = Edx^2 + 2Fdx dy + Gdy^2$?
A problem of Roger Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: \(y'' = F(x, y, y') \). (Douglas 1936).
 1. Unparametrised geodesics of affine connection: \(\frac{\partial^4 F}{\partial (y')^4} = 0 \)
 2. Levi–Civita connection of \(g = E \, dx^2 + 2F \, dx \, dy + G \, dy^2 \)?

- Bryant, MD, Eastwood (J. Diff. Geom 2009). Solution to the Liouville’s problem: Necessary and sufficient conditions for a family of paths to extremize a distance.
A problem of Roger Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: $y'' = F(x, y, y')$. (Douglas 1936).
- Unparametrised geodesics of affine connection: $\frac{\partial^4 F}{\partial (y')^4} = 0$
- Levi–Civita connection of $g = E dx^2 + 2F dx dy + G dy^2$?

- Bryant, MD, Eastwood (J. Diff. Geom 2009). Solution to the Liouville’s problem: Necessary and sufficient conditions for a family of paths to extremize a distance.

- Twistor theory
Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

\[y = \varphi, \quad x = \int \cos(\theta) - 1 \, d\theta = \ln\left(\tan(\theta) + \cos(\theta) - 1\right). \]

Images of great circles = solutions to the Mercator ODE

\[y'' = \tanh(x) \left(y' + (y')^3\right). \]
Mercator Projection

Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

- Conformal condition (straight lines = loxodromes) $dx/d\theta = \cos(\theta)^{-1}$.

$\frac{x}{y} = \tan(\theta), x = \int \cos(\theta) - 1 d\theta = \ln((\tan(\theta) + \cos(\theta)) - 1)$.

$\frac{g}{dx^2 + dy^2} = \cosh(x) - 2(\frac{dx}{2})^2$.

Dunajski (DAMTP, Cambridge)

Liouville’s Problem

Moscow, December 2011
Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

- Conformal condition (straight lines = loxodromes) $dx/d\theta = \cos(\theta)^{-1}$.
- Edward Wright (1599)

$$y = \phi, \quad x = \int \cos(\theta)^{-1}d\theta = \ln \left((\tan(\theta) + \cos(\theta)^{-1}) \right).$$
Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

- **Conformal condition** (straight lines = loxodromes) $dx/d\theta = \cos(\theta)^{-1}$.
- **Edward Wright (1599)**
 \[y = \phi, \quad x = \int \cos(\theta)^{-1} d\theta = \ln \left((\tan(\theta) + \cos(\theta)^{-1}) \right). \]
- **Images of great circles = solutions to the Mercator ODE**
 \[y'' = \tanh(x) \left(y' + (y')^3 \right). \]
Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

- Conformal condition (straight lines = loxodromes) $dx/d\theta = \cos(\theta)^{-1}$.
- Edward Wright (1599)

$$y = \phi, \quad x = \int \cos(\theta)^{-1} d\theta = \ln \left((\tan(\theta) + \cos(\theta)^{-1}) \right).$$

- Images of great circles = solutions to the Mercator ODE

$$y'' = \tanh(x) \left(y' + (y')^3 \right) \quad g = \cosh(x)^{-2}(dx^2 + dy^2).$$
Great circles $|\mathbf{r}| = 1$, $\mathbf{r} \cdot \mathbf{n} = 0 \leftrightarrow$ points $\mathbf{n} \in S^2$.
Twistor space

- Great circles $|\mathbf{r}| = 1, \mathbf{r} \cdot \mathbf{n} = 0 \iff$ points $\mathbf{n} \in S^2$.

- Projective duality. $[X, Y, Z] \in \mathbb{RP}^2, [P, Q, R] \in \mathbb{RP}^2^*$.

 $XP + YQ + ZR = 0$.

Liouville’s Problem

Dunajski (DAMTP, Cambridge) Liouville’s Problem Moscow, December 2011
Twistor space

- Great circles $|\mathbf{r}| = 1, \mathbf{r} \cdot \mathbf{n} = 0 \iff \text{points } \mathbf{n} \in S^2$.

- Projective duality. $[X, Y, Z] \in \mathbb{RP}^2, [P, Q, R] \in \mathbb{RP}^2^*$.

\[XP + YQ +ZR = 0. \]

\[xp + yq + 1 = 0, \quad p = P/R, q = Q/R, \quad x = X/Z, y = Y/Z. \]
Nonlinear duality. \(H(x, y, p, q) = 0 \)
- Nonlinear duality. $H(x, y, p, q) = 0$

- Implicit function theorem $y = Y(x, p, q)$.
Nonlinear duality. \(H(x, y, p, q) = 0 \)

Implicit function theorem \(y = Y(x, p, q) \).

Differentiate, eliminate \((p, q)\)

\[y'' = \mathcal{F}(x, y, y'). \]
Twistor space

- Nonlinear duality. \(H(x, y, p, q) = 0 \)

- Implicit function theorem \(y = Y(x, p, q) \).

- Differentiate, eliminate \((p, q)\)

\[
y'' = \mathcal{F}(x, y, y').
\]

- Complexify: \(C \subset U \) is geodesic iff \(C \cong \mathbb{CP}^1 \subset T \) is rational with normal bundle \(\mathcal{O}(1) \).
Twistor space

- Nonlinear duality. $H(x, y, p, q) = 0$

- Implicit function theorem $y = Y(x, p, q)$.
- Differentiate, eliminate (p, q)

$$y'' = F(x, y, y').$$

- Complexify: $C \subset U$ is geodesic iff $C \cong \mathbb{CP}^1 \subset T$ is rational with normal bundle $\mathcal{O}(1)$.
- C is a metric geodesic iff there exists a preferred section of $\kappa_T^{-2/3}$ where κ_T is the holomorphic canonical bundle of T.
A projective structure on an open set $U \subset \mathbb{R}^n$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.
A projective structure on an open set $U \subset \mathbb{R}^n$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

The geodesic flows project to the same foliation of $\mathbb{P}(TU)$. The analytic expression for this equivalence class is

$$\hat{\Gamma}^c_{ab} = \Gamma^c_{ab} + \delta_a^c \omega_b + \delta_b^c \omega_a, \quad a, b, c = 1, 2, \ldots, n$$

for some one–form $\omega = \omega_a dx^a$.
A projective structure on an open set $U \subset \mathbb{R}^n$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

The geodesic flows project to the same foliation of $\mathbb{P}(TU)$. The analytic expression for this equivalence class is

$$\hat{\Gamma}^c_{ab} = \Gamma^c_{ab} + \delta^c_a \omega_b + \delta^c_b \omega_a, \quad a, b, c = 1, 2, \ldots, n$$

for some one–form $\omega = \omega_a dx^a$.

Two dimensions–link with second order ODEs:

$$\ddot{x}_c + \Gamma^c_{ab} \dot{x}_a \dot{x}_b = 0$$
$$d^2 y \frac{d^2 y}{dx^2} = A_3 \left(\frac{dy}{dx} \right)^3 + A_2 \left(\frac{dy}{dx} \right)^2 + A_1 \frac{dy}{dx} + A_0$$

where $A_0 = -\Gamma^2_{11}$, $A_1 = \Gamma^1_{11} - 2\Gamma^2_{12}$, $A_2 = 2\Gamma^1_{12} - \Gamma^2_{22}$, $A_3 = \Gamma^1_{22}$.
A projective structure on an open set \(U \subset \mathbb{R}^n \) is an equivalence class of torsion free connections \([\Gamma]\). Two connections \(\Gamma \) and \(\hat{\Gamma} \) are equivalent if they share the same unparametrised geodesics.

The geodesic flows project to the same foliation of \(\mathbb{P}(TU) \). The analytic expression for this equivalence class is

\[
\hat{\Gamma}^c_{ab} = \Gamma^c_{ab} + \delta_a^c \omega_b + \delta_b^c \omega_a, \quad a, b, c = 1, 2, \ldots, n
\]

for some one–form \(\omega = \omega_a dx^a \).

Two dimensions–link with second order ODEs:

\[
\ddot{x}^c + \Gamma^c_{ab} \dot{x}^a \dot{x}^b = 0, \text{ where } x^a(t) = (x(t), y(t)).
\]
A projective structure on an open set $U \subset \mathbb{R}^n$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

The geodesic flows project to the same foliation of $\mathbb{P}(TU)$. The analytic expression for this equivalence class is

$$\hat{\Gamma}^{c}_{ab} = \Gamma^{c}_{ab} + \delta_a^c \omega_b + \delta_b^c \omega_a, \quad a, b, c = 1, 2, \ldots, n$$

for some one–form $\omega = \omega_a dx^a$.

Two dimensions–link with second order ODEs:

1. $\ddot{x}^c + \Gamma^c_{ab} \dot{x}^a \dot{x}^b = 0$, where $x^a(t) = (x(t), y(t))$.
2. Eliminate the parameter t: second order ODE

$$\frac{d^2 y}{dx^2} = A_3 \left(\frac{dy}{dx} \right)^3 + A_2 \left(\frac{dy}{dx} \right)^2 + A_1 \left(\frac{dy}{dx} \right) + A_0, \quad A_i = A_i(x, y)$$

where $A_0 = -\Gamma^2_{11}, A_1 = \Gamma^1_{11} - 2\Gamma^2_{12}, A_2 = 2\Gamma^1_{12} - \Gamma^2_{22}, A_3 = \Gamma^1_{22}$.

Dunajski (DAMTP, Cambridge)
What are the necessary and sufficient local conditions on a connection Γ_{ab}^c for the existence of a one form ω_a and a symmetric non–degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma_{ab}^c + \delta_a^c \omega_b + \delta_b^c \omega_a$ is the Levi-Civita connection for g_{ab}?
What are the necessary and sufficient local conditions on a connection Γ_{ab}^c for the existence of a one form ω_a and a symmetric non–degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma_{ab}^c + \delta_a^c \omega_b + \delta_b^c \omega_a$ is the Levi-Civita connection for g_{ab}?

Summary of the Results in 2D - Bryant, MD, Eastwood. *JDG (2009).*
What are the necessary and sufficient local conditions on a connection Γ^c_{ab} for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma^c_{ab} + \delta^c_a \omega_b + \delta^c_b \omega_a$ is the Levi-Civita connection for g_{ab}?

Summary of the Results in 2D - Bryant, MD, Eastwood. *JDG (2009).*

1. **Necessary condition:** obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of $[\Gamma]$ or a weighted scalar projective invariant of the projective class.
What are the necessary and sufficient local conditions on a connection Γ^c_{ab} for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma^c_{ab} + \delta^c_a \omega_b + \delta^c_b \omega_a$ is the Levi-Civita connection for g_{ab}?

Summary of the Results in 2D - Bryant, MD, Eastwood. *JDG (2009)*.

1. **Necessary condition**: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of $[\Gamma]$ or a weighted scalar projective invariant of the projective class.

2. **Sufficient conditions**: In the generic case vanishing of two invariants of order 6.
Metric $g = E(x, y)dx^2 + 2F(x, y)dxdy + G(x, y)dy^2$ gives

\[
A_0 = (E \partial_y E - 2E \partial_x F + F \partial_x E)(EG - F^2)^{-1}/2,
\]

\[
A_1 = (3F \partial_y E + G \partial_x E - 2F \partial_x F - 2E \partial_x G)(EG - F^2)^{-1}/2,
\]

\[
A_2 = (2F \partial_y F + 2G \partial_y E - 3F \partial_x G - E \partial_y G)(EG - F^2)^{-1}/2,
\]

\[
A_3 = (2G \partial_y F - G \partial_x G - F \partial_y G)(EG - F^2)^{-1}/2, \quad (*)
\]
Prolongation I

- Metric \(g = E(x, y)dx^2 + 2F(x, y)dxdy + G(x, y)dy^2 \) gives

\[
A_0 = (E \partial_y E - 2E \partial_x F + F \partial_x E) (EG - F^2)^{-1}/2,
\]
\[
A_1 = (3F \partial_y E + G \partial_x E - 2F \partial_x F - 2E \partial_x G) (EG - F^2)^{-1}/2,
\]
\[
A_2 = (2F \partial_y F + 2G \partial_y E - 3F \partial_x G - E \partial_y G) (EG - F^2)^{-1}/2,
\]
\[
A_3 = (2G \partial_y F - G \partial_x G - F \partial_y G) (EG - F^2)^{-1}/2,
\]

- First order homogeneous differential operator with 1D fibres \(\sigma^0 : J^1(S^2(T^*U)) \longrightarrow J^0(\text{Pr}(U)) \). Differentiating (\(* \)) prolongs this operator to bundle maps \(\sigma^k : J^{k+1}(S^2(T^*U)) \longrightarrow J^k(\text{Pr}(U)) \).
Metric \(g = E(x, y)dx^2 + 2F(x, y)dxdy + G(x, y)dy^2 \) gives

\[
A_0 = (E\partial_y E - 2E\partial_x F + F\partial_x E) (EG - F^2)^{-1}/2,
\]

\[
A_1 = (3F\partial_y E + G\partial_x E - 2F\partial_x F - 2E\partial_x G) (EG - F^2)^{-1}/2,
\]

\[
A_2 = (2F\partial_y F + 2G\partial_y E - 3F\partial_x G - E\partial_y G) (EG - F^2)^{-1}/2,
\]

\[
A_3 = (2G\partial_y F - G\partial_x G - F\partial_y G) (EG - F^2)^{-1}/2,
\]

First order homogeneous differential operator with 1D fibres

\[\sigma^0 : J^1(S^2(T^*U)) \longrightarrow J^0(Pr(U)). \]

Differentiating \((*)\) prolongs this operator to bundle maps

\[\sigma^k : J^{k+1}(S^2(T^*U)) \longrightarrow J^k(Pr(U)). \]

Theorem: Solutions to \((*)\) \(\Leftrightarrow\) parallel section of a linear connection \(D\) on a rank six vector bundle \(\mathcal{E} \rightarrow U\).
Prolongation II

<table>
<thead>
<tr>
<th>k</th>
<th>$(J^{k+1}(S^2(T^*U)))$</th>
<th>$(J^k(\text{Pr}(U)))$</th>
<th>$(\ker \sigma^k)$</th>
<th>obstructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>24</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>40</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>60</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>84</td>
<td>1</td>
<td>$1 = 1$</td>
</tr>
<tr>
<td>6</td>
<td>108</td>
<td>112</td>
<td>1</td>
<td>$5 = 3 + 2$</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>144</td>
<td>1</td>
<td>$10 = 6 + 6 - 2$</td>
</tr>
</tbody>
</table>

- No obstruction on a projective structure before the order 5.
<table>
<thead>
<tr>
<th>k</th>
<th>$(J^{k+1}(S^2(T^*U)))$</th>
<th>$(J^k(Pr(U)))$</th>
<th>$(\ker \sigma^k)$</th>
<th>obstructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>24</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>40</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>60</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>84</td>
<td>1</td>
<td>1 $= 1$</td>
</tr>
<tr>
<td>6</td>
<td>108</td>
<td>112</td>
<td>1</td>
<td>5 $= 3 + 2$</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>144</td>
<td>1</td>
<td>10 $= 6 + 6 - 2$</td>
</tr>
</tbody>
</table>

- No obstruction on a projective structure before the order 5.
- 5-jets. At least a 1D fiber, at most 83D image. First obstruction M.
No obstruction on a projective structure before the order 5.

5-jets. At least a 1D fiber, at most 83D image. First obstruction M.

6-jets. Dimension $112 - 3 = 109$. The image of the 7-jets of metric structures can have dimension $108 - 1 = 107$. Two more 6th order obstructions E_1, E_2.

<table>
<thead>
<tr>
<th>k</th>
<th>$(J^{k+1}(S^2(T^*U)))$</th>
<th>$(J^k(Pr(U)))$</th>
<th>$(\ker \sigma^k)$</th>
<th>obstructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>24</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>40</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>60</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>84</td>
<td>1</td>
<td>1 = 1</td>
</tr>
<tr>
<td>6</td>
<td>108</td>
<td>112</td>
<td>1</td>
<td>$5 = 3 + 2$</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>144</td>
<td>1</td>
<td>$10 = 6 + 6 - 2$</td>
</tr>
</tbody>
</table>
No obstruction on a projective structure before the order 5.

5-jets. At least a 1D fiber, at most 83D image. First obstruction M.

6-jets. Dimension $112 - 3 = 109$. The image of the 7-jets of metric structures can have dimension $108 - 1 = 107$. Two more 6th order obstructions E_1, E_2.

7-jets. The image has codimension 10. Two relations between the first derivatives of $E_1 = E_2 = 0$ and the second derivatives of the 5th order equation $M = 0$. The system is involutive.

<table>
<thead>
<tr>
<th>k</th>
<th>$(J^{k+1}(S^2(T^*U)))$</th>
<th>$(J^k(Pr(U)))$</th>
<th>$(\ker \sigma^k)$</th>
<th>obstructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>24</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>40</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>60</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>84</td>
<td>1</td>
<td>1 = 1</td>
</tr>
<tr>
<td>6</td>
<td>108</td>
<td>112</td>
<td>1</td>
<td>5 = 3 + 2</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>144</td>
<td>1</td>
<td>10 = 6 + 6 − 2</td>
</tr>
</tbody>
</table>
The importance of 6th order conditions

- One parameter family of projective structures

\[\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx} \right)^2. \]
The importance of 6th order conditions

- One parameter family of projective structures
 \[\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx} \right)^2. \]

- 5th order condition holds if \(c \) is a root of a quartic
 \[864 c^4 - 792 c^3 - 3960 c^2 - 4750 c - 1875 = 0. \]
The importance of 6th order conditions

- One parameter family of projective structures

\[\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx} \right)^2. \]

- 5th order condition holds if \(c \) is a root of a quartic

\[864 c^4 - 792 c^3 - 3960 c^2 - 4750 c - 1875 = 0. \]

- The 6th order conditions are satisfied iff

\[1728 c^3 - 8856 c^2 - 2100 c + 625 = 0, \]

\[7776 c^5 + 19656 c^4 - 21852 c^3 - 42054 c^2 - 28725 c - 11125 = 0. \]
The importance of 6th order conditions

- One parameter family of projective structures
 \[\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx} \right)^2. \]

- 5th order condition holds if \(c \) is a root of a quartic
 \[864c^4 - 792c^3 - 3960c^2 - 4750c - 1875 = 0. \]

- The 6th order conditions are satisfied iff
 \[1728c^3 - 8856c^2 - 2100c + 625 = 0, \]
 \[7776c^5 + 19656c^4 - 21852c^3 - 42054c^2 - 28725c - 11125 = 0. \]

- These three polynomials do not have a common root. We can make the 5th order obstruction vanish, but the two 6th order obstructions \(E_1, E_2 \) do not vanish.
Large class of systems (Zakharov, . . . , Manakov–Santini–Grinevich.)
Characteristic initial value problem for dKP

- Large class of systems (Zakharov, . . ., Manakov–Santini–Grinevich.)
- $(u_t - uu_x)_x = u_{yy}$, $u = u(x, y, t)$. Dispersionless KP.
Characteristic initial value problem for dKP

- Large class of systems (Zakharov, . . ., Manakov–Santini–Grinevich.)
- $(u_t - uu_x)_x = u_{yy}$, $u = u(x, y, t)$. Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):

\begin{align*}
\text{Dispersionless Lax pair} & = 1\text{-parameter family of projective structures.} \\
L_t & = \partial_y + \lambda \partial_x - u_x \partial_\lambda, \\
M & = \partial_t + \left(\lambda^2 + u\right) \partial_x + \left(u_y - \lambda u_x\right) \partial_\lambda.
\end{align*}

Boundary cond: Asymptotically flat projective structure $u_{xxx} \approx 0$.

Dunajski (DAMTP, Cambridge)
Liouville’s Problem
Moscow, December 2011
Large class of systems (Zakharov, . . . , Manakov–Santini–Grinevich.)

\((u_t - uu_x)_x = u_{yy}, \quad u = u(x, y, t). \) Dispersionless KP.

Twistor correspondence (MD, Mason, Tod):

1. One to one correspondence between equivalence classes of solutions to dKP and complex two–folds \(T \) with a three parameter family of rational curves with normal bundle \(O(2) \) and a section of \(\kappa_T^{-1/4} \).
Large class of systems (Zakharov, . . ., Manakov–Santini–Grinevich.)

\[(u_t - uu_x)_x = u_{yy}, \quad u = u(x, y, t).\] Dispersionless KP.

Twistor correspondence (MD, Mason, Tod):

1. One to one correspondence between equivalence classes of solutions to dKP and complex two–folds \(T\) with a three parameter family of rational curves with normal bundle \(O(2)\) an a section of \(\kappa_T^{-1/4}\).

2. Einstein–Weyl structure: \(h = dy^2 - 4dxdt - 4udt^2, \quad \nu = -4u_x dt\).

Cauchy problem (work in progress)
Characteristic Initial Value Problem for dKP

- Large class of systems (Zakharov, . . ., Manakov–Santini–Grinevich.)
- $$(u_t - uu_x)_x = u_{yy}, \ u = u(x, y, t).$$ Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 1. One to one correspondence between equivalence classes of solutions to dKP and complex two–folds T with a three parameter family of rational curves with normal bundle $O(2)$ an a section of $\kappa_T^{-1/4}$.
 2. Einstein–Weyl structure: $h = dy^2 - 4dxdt - 4udt^2, \ \nu = -4u_xdt$.
- Cauchy problem (work in progress)
 1. Surface $t = 0 \leftrightarrow$ two–parameter family of curves through a point in T.
Characteristic initial value problem for dKP

- Large class of systems (Zakharov, . . . , Manakov–Santini–Grinevich.)
- \((u_t - uu_x)_x = u_{yy}, \ u = u(x, y, t).\) Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 1. One to one correspondence between equivalence classes of solutions to dKP and complex two–folds \(T\) with a three parameter family of rational curves with normal bundle \(O(2)\) an a section of \(\kappa_T^{-1/4}\).
 2. Einstein–Weyl structure: \(h = dy^2 - 4dxdt - 4udt^2, \ \nu = -4u_xdt.\)
- Cauchy problem (work in progress)
 1. Surface \(t = 0 \leftrightarrow\) two–parameter family of curves through a point in \(T\).
 2. Projective structure

\[
L_0 = \partial_y + \lambda \partial_x - u_x(x, y, t = 0) \partial_\lambda, \quad \frac{d^2 x}{dy^2} = -\frac{\partial u(x, y, t = 0)}{\partial x}.
\]
Large class of systems (Zakharov, . . . , Manakov–Santini–Grinevich.)

\[(u_t - uu_x)_x = u_{yy}, \ u = u(x, y, t).\] Dispersionless KP.

Twistor correspondence (MD, Mason, Tod):
1. One to one correspondence between equivalence classes of solutions to dKP and complex two–folds T with a three parameter family of rational curves with normal bundle $\mathcal{O}(2)$ an a section of $\kappa_T^{-1/4}$.
2. Einstein–Weyl structure: $h = dy^2 - 4dxdt - 4udt^2$, $\nu = -4uxdt$.

Cauchy problem (work in progress)
1. Surface $t = 0 \leftrightarrow$ two–parameter family of curves through a point in T.
2. Projective structure

\[
L_0 = \partial_y + \lambda \partial_x - u_x(x, y, t = 0) \partial_\lambda, \quad \frac{d^2 x}{dy^2} = -\frac{\partial u(x, y, t = 0)}{\partial x}.
\]

3. Dispersionless Lax pair = 1-parameter family of projective structures.

\[
L_t = \partial_y + \lambda \partial_x - u_x(x, y, t) \partial_\lambda, \quad M = \partial_t + (\lambda^2 + u) \partial_x + (u_y - \lambda u_x) \partial_\lambda.
\]
Characteristic initial value problem for d**KP**

- Large class of systems (Zakharov, . . . , Manakov–Santini–Grinevich.)
- $(u_t - uu_x)_x = u_{yy}, \ u = u(x, y, t)$. Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 1. One to one correspondence between equivalence classes of solutions to d**KP** and complex two–folds T with a three parameter family of rational curves with normal bundle $O(2)$ an a section of $\kappa_T^{-1/4}$.
 2. Einstein–Weyl structure: $h = dy^2 - 4dxdt - 4udt^2$, $\nu = -4u_xdt$.
- Cauchy problem (work in progress)
 1. Surface $t = 0 \leftrightarrow$ two–parameter family of curves through a point in T.
 2. Projective structure

\[L_0 = \partial_y + \lambda \partial_x - u_x(x, y, t = 0) \partial_\lambda, \quad \frac{d^2x}{dy^2} = -\frac{\partial u(x, y, t = 0)}{\partial x}. \]

- Dispersionless Lax pair = 1-parameter family of projective structures.

\[L_t = \partial_y + \lambda \partial_x - u_x(x, y, t) \partial_\lambda, \quad M = \partial_t + (\lambda^2 + u) \partial_x + (u_y - \lambda u_x) \partial_\lambda. \]

- Boundary cond: Asymptotically flat projective structure $u_{xxx} \approx 0$.

Dunajski (DAMTP, Cambridge)

Moscow, December 2011
This talk: Given a (projective) connection can you find a metric?
This talk: Given a (projective) connection can you find a metric?

General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:

This talk: Given a (projective) connection can you find a metric?

General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:

This talk: Given a (projective) connection can you find a metric?

General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:

This talk: Given a (projective) connection can you find a metric?

General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:

Projective structures on characteristic initial data surfaces for dispersionless integrable systems.
This talk: Given a (projective) connection can you find a metric?

General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:

Projective structures on characteristic initial data surfaces for dispersionless integrable systems.

Thank You.