A PROBLEM OF ROGER LIOUVILLE

Maciej Dunajski

Clare College and Department of Applied Mathematics and Theoretical Physics University of Cambridge

DUNAJSKI (DAMTP, CAMBRIDGE)

LIOUVILLE'S PROBLEM

MERCATOR'S NAVIGATION

• Mercator 1569. Rhumb lines - not the shortest, but easy to follow.

MERCATOR'S NAVIGATION

• Mercator 1569. Rhumb lines - not the shortest, but easy to follow.

• Mercator paths are unparametrised geodesics = images of great circles on a sphere.

A PROBLEM OF ROGER LIOUVILLE (1889)

• Path geometry:
$$y'' = \mathcal{F}(x, y, y')$$
. (Douglas 1936).

A PROBLEM OF ROGER LIOUVILLE (1889)

- Path geometry: $y'' = \mathcal{F}(x, y, y')$. (Douglas 1936).
 - **()** Unparametrised geodesics of affine connection: $\partial^4 \mathcal{F}/\partial (y')^4 = 0$

- Path geometry: $y'' = \mathcal{F}(x, y, y')$. (Douglas 1936).
 - **()** Unparametrised geodesics of affine connection: $\partial^4 \mathcal{F}/\partial (y')^4 = 0$
 - 2 Levi-Civita connection of $g = Edx^2 + 2Fdxdy + Gdy^2$?

- Path geometry: $y'' = \mathcal{F}(x, y, y')$. (Douglas 1936).
 - **(**) Unparametrised geodesics of affine connection: $\partial^4 \mathcal{F} / \partial (y')^4 = 0$
 - 2 Levi-Civita connection of $g = Edx^2 + 2Fdxdy + Gdy^2$?
- Bryant, MD, Eastwood (J. Diff. Geom 2009). Solution to the Liouville's problem: Necessary and sufficient conditions for a family of paths to extremize a distance.

- Path geometry: $y'' = \mathcal{F}(x, y, y')$. (Douglas 1936).
 - **(** Unparametrised geodesics of affine connection: $\partial^4 \mathcal{F} / \partial (y')^4 = 0$
 - 2 Levi-Civita connection of $g = Edx^2 + 2Fdxdy + Gdy^2$?
- Bryant, MD, Eastwood (J. Diff. Geom 2009). Solution to the Liouville's problem: Necessary and sufficient conditions for a family of paths to extremize a distance.
- Twistor theory

Parallel at latitude θ is stretched by $\cos{(\theta)^{-1}}$

Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

• Conformal condition (straight lines = loxodromes) $dx/d\theta = \cos(\theta)^{-1}$.

Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

Conformal condition (straight lines = loxodromes) dx/dθ = cos (θ)⁻¹.
Edward Wright (1599)

$$y = \phi$$
, $x = \int \cos(\theta)^{-1} d\theta = \ln\left(\left(\tan(\theta) + \cos(\theta)^{-1}\right)\right)$.

Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

Conformal condition (straight lines = loxodromes) dx/dθ = cos (θ)⁻¹.
Edward Wright (1599)

$$y = \phi$$
, $x = \int \cos(\theta)^{-1} d\theta = \ln\left(\left(\tan(\theta) + \cos(\theta)^{-1}\right)\right)$.

• Images of great circles = solutions to the Mercator ODE

$$y'' = \tanh(x)(y' + (y')^3)$$

DUNAJSKI (DAMTP, CAMBRIDGE)

Moscow, December 2011

Parallel at latitude θ is stretched by $\cos(\theta)^{-1}$

Conformal condition (straight lines = loxodromes) dx/dθ = cos (θ)⁻¹.
Edward Wright (1599)

$$y = \phi$$
, $x = \int \cos(\theta)^{-1} d\theta = \ln\left(\left(\tan(\theta) + \cos(\theta)^{-1}\right)\right)$.

• Images of great circles = solutions to the Mercator ODE

$$y'' = \tanh(x)\Big(y' + (y')^3\Big)$$
 $g = \cosh(x)^{-2}(dx^2 + dy^2).$

DUNAJSKI (DAMTP, CAMBRIDGE)

Moscow, December 2011

• Great circles $|\mathbf{r}| = 1, \mathbf{r} \cdot \mathbf{n} = 0 \leftrightarrow$ points $\mathbf{n} \in S^2$.

• Great circles $|\mathbf{r}| = 1, \mathbf{r} \cdot \mathbf{n} = 0 \leftrightarrow$ points $\mathbf{n} \in S^2$.

• Projective duality. $[X, Y, Z] \in \mathbb{RP}^2, [P, Q, R] \in \mathbb{RP}^{2^*}.$

XP + YQ + ZR = 0.

• Great circles $|\mathbf{r}| = 1, \mathbf{r} \cdot \mathbf{n} = 0 \leftrightarrow$ points $\mathbf{n} \in S^2$.

• Projective duality. $[X, Y, Z] \in \mathbb{RP}^2, [P, Q, R] \in \mathbb{RP}^{2^*}.$

XP + YQ + ZR = 0.

 $xp + yq + 1 = 0, \qquad p = P/R, q = Q/R \quad x = X/Z, y = Y/Z.$

• Nonlinear duality. H(x, y, p, q) = 0

• Nonlinear duality. H(x, y, p, q) = 0

• Implicit function theorem y = Y(x, p, q).

• Nonlinear duality. H(x, y, p, q) = 0

- Implicit function theorem y = Y(x, p, q).
- Differentiate, eliminate (p,q)

$$y'' = \mathcal{F}(x, y, y').$$

• Nonlinear duality. H(x, y, p, q) = 0

- Implicit function theorem y = Y(x, p, q).
- Differentiate, eliminate (p,q)

$$y'' = \mathcal{F}(x, y, y').$$

• Complexify: $C \subset U$ is geodesic iff $C \cong \mathbb{CP}^1 \subset T$ is rational with normal bundle $\mathcal{O}(1)$.

<u>6</u> / 13

• Nonlinear duality. H(x, y, p, q) = 0

- Implicit function theorem y = Y(x, p, q).
- Differentiate, eliminate (p,q)

$$y'' = \mathcal{F}(x, y, y').$$

- Complexify: $C \subset U$ is geodesic iff $C \cong \mathbb{CP}^1 \subset T$ is rational with normal bundle $\mathcal{O}(1)$.
- *C* is a metric geodesic iff there exists a preferred section of $\kappa_T^{-2/3}$ where κ_T is the holomorphic canonical bundle of *T*.

 A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ are equivalent if they share the same unparametrised geodesics.

- A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ̂ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(TU)$. The analytic expression for this equivalence class is

 $\hat{\Gamma}_{ab}^{c} = \Gamma_{ab}^{c} + \delta_{a}{}^{c}\omega_{b} + \delta_{b}{}^{c}\omega_{a}, \qquad a, b, c = 1, 2, \dots, n$

for some one–form $\omega = \omega_a dx^a$.

- A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ̂ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(TU).$ The analytic expression for this equivalence class is

 $\hat{\Gamma}_{ab}^{c} = \Gamma_{ab}^{c} + \delta_{a}{}^{c}\omega_{b} + \delta_{b}{}^{c}\omega_{a}, \qquad a, b, c = 1, 2, \dots, n$

for some one–form $\omega = \omega_a dx^a$.

• Two dimensions-link with second order ODEs:

- A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ̂ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(TU).$ The analytic expression for this equivalence class is

 $\hat{\Gamma}_{ab}^{c} = \Gamma_{ab}^{c} + \delta_{a}{}^{c}\omega_{b} + \delta_{b}{}^{c}\omega_{a}, \qquad a, b, c = 1, 2, \dots, n$

for some one–form $\omega = \omega_a dx^a$.

Two dimensions-link with second order ODEs:
 x
^c + Γ^c_{ab}x^ax^b = 0, where x^a(t) = (x(t), y(t)).

- A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ̂ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(TU).$ The analytic expression for this equivalence class is

$$\hat{\Gamma}_{ab}^{c} = \Gamma_{ab}^{c} + \delta_{a}{}^{c}\omega_{b} + \delta_{b}{}^{c}\omega_{a}, \qquad a, b, c = 1, 2, \dots, r$$

for some one–form $\omega = \omega_a dx^a$.

- Two dimensions-link with second order ODEs:
 - **(**) $\ddot{x}^{c} + \Gamma^{c}_{ab}\dot{x}^{a}\dot{x}^{b} = 0$, where $x^{a}(t) = (x(t), y(t))$.
 - Eliminate the parameter t: second order ODE

$$\frac{d^2y}{dx^2} = A_3 \left(\frac{dy}{dx}\right)^3 + A_2 \left(\frac{dy}{dx}\right)^2 + A_1 \left(\frac{dy}{dx}\right) + A_0, \quad A_i = A_i(x, y)$$

where $A_0 = -\Gamma_{11}^2, A_1 = \Gamma_{11}^1 - 2\Gamma_{12}^2, A_2 = 2\Gamma_{12}^1 - \Gamma_{22}^2, A_3 = \Gamma_{22}^1.$

• What are the necessary and sufficient local conditions on a connection Γ_{ab}^c for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma_{ab}^c + \delta_a{}^c \omega_b + \delta_b{}^c \omega_a$ is the Levi-Civita connection for g_{ab} ?

- What are the necessary and sufficient local conditions on a connection Γ_{ab}^c for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma_{ab}^c + \delta_a{}^c \omega_b + \delta_b{}^c \omega_a$ is the Levi-Civita connection for g_{ab} ?
- Summary of the Results in 2D Bryant, MD, Eastwood. JDG (2009).

- What are the necessary and sufficient local conditions on a connection Γ^c_{ab} for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma^c_{ab} + \delta_a{}^c\omega_b + \delta_b{}^c\omega_a$ is the Levi-Civita connection for g_{ab} ?
- Summary of the Results in 2D Bryant, MD, Eastwood. JDG (2009).
 - Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of [Γ] or a weighted scalar projective invariant of the projective class.

- What are the necessary and sufficient local conditions on a connection Γ^c_{ab} for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection $\Gamma^c_{ab} + \delta_a{}^c\omega_b + \delta_b{}^c\omega_a$ is the Levi-Civita connection for g_{ab} ?
- Summary of the Results in 2D Bryant, MD, Eastwood. JDG (2009).
 - Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of [Γ] or a weighted scalar projective invariant of the projective class.
 - Sufficient conditions: In the generic case vanishing of two invariants of order 6.

PROLONGATION I

• Metric
$$g = E(x,y)dx^2 + 2F(x,y)dxdy + G(x,y)dy^2$$
 gives

$$A_{0} = (E\partial_{y}E - 2E\partial_{x}F + F\partial_{x}E)(EG - F^{2})^{-1}/2,$$

$$A_{1} = (3F\partial_{y}E + G\partial_{x}E - 2F\partial_{x}F - 2E\partial_{x}G)(EG - F^{2})^{-1}/2,$$

$$A_{2} = (2F\partial_{y}F + 2G\partial_{y}E - 3F\partial_{x}G - E\partial_{y}G)(EG - F^{2})^{-1}/2,$$

$$A_{3} = (2G\partial_{y}F - G\partial_{x}G - F\partial_{y}G)(EG - F^{2})^{-1}/2, \quad (*)$$

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

PROLONGATION I

• Metric $g = E(x,y)dx^2 + 2F(x,y)dxdy + G(x,y)dy^2$ gives

$$A_{0} = (E\partial_{y}E - 2E\partial_{x}F + F\partial_{x}E)(EG - F^{2})^{-1}/2,$$

$$A_{1} = (3F\partial_{y}E + G\partial_{x}E - 2F\partial_{x}F - 2E\partial_{x}G)(EG - F^{2})^{-1}/2,$$

$$A_{2} = (2F\partial_{y}F + 2G\partial_{y}E - 3F\partial_{x}G - E\partial_{y}G)(EG - F^{2})^{-1}/2,$$

$$A_{3} = (2G\partial_{y}F - G\partial_{x}G - F\partial_{y}G)(EG - F^{2})^{-1}/2, \quad (*)$$

• First order homogeneous differential operator with 1D fibres $\sigma^0: J^1(S^2(T^*U)) \longrightarrow J^0(\Pr(U))$. Differentiating (*) prolongs this operator to bundle maps $\sigma^k: J^{k+1}(S^2(T^*U)) \longrightarrow J^k(\Pr(U))$.

PROLONGATION I

• Metric $g = E(x,y)dx^2 + 2F(x,y)dxdy + G(x,y)dy^2$ gives

$$A_{0} = (E\partial_{y}E - 2E\partial_{x}F + F\partial_{x}E)(EG - F^{2})^{-1}/2,$$

$$A_{1} = (3F\partial_{y}E + G\partial_{x}E - 2F\partial_{x}F - 2E\partial_{x}G)(EG - F^{2})^{-1}/2,$$

$$A_{2} = (2F\partial_{y}F + 2G\partial_{y}E - 3F\partial_{x}G - E\partial_{y}G)(EG - F^{2})^{-1}/2,$$

$$A_{3} = (2G\partial_{y}F - G\partial_{x}G - F\partial_{y}G)(EG - F^{2})^{-1}/2, \quad (*)$$

- First order homogeneous differential operator with 1D fibres $\sigma^0: J^1(S^2(T^*U)) \longrightarrow J^0(\Pr(U))$. Differentiating (*) prolongs this operator to bundle maps $\sigma^k: J^{k+1}(S^2(T^*U)) \longrightarrow J^k(\Pr(U))$.
- Theorem: Solutions to (*) ↔ parallel section of a linear connection D on a rank six vector bundle E → U.

PROLONGATION II

k	$(J^{k+1}(S^2(T^*U)))$	$(J^k(Pr(U)))$	$(\ker \sigma^k)$	obstructions
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

• No obstruction on a projective structure before the order 5.

PROLONGATION II

k	$(J^{k+1}(S^2(T^*U)))$	$(J^k(Pr(U)))$	$(\ker \sigma^k)$	obstructions
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

• No obstruction on a projective structure before the order 5.

 \bullet 5-jets. At least a 1D fiber, at most 83D image. First obstruction M .

PROLONGATION II

k	$(J^{k+1}(S^2(T^*U)))$	$(J^k(Pr(U)))$	$(\ker \sigma^k)$	obstructions
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

- No obstruction on a projective structure before the order 5.
- $\bullet\,$ 5-jets. At least a 1D fiber, at most 83D image. First obstruction M .
- 6-jets. Dimension 112 3 = 109. The image of the 7-jets of metric structures can have dimension 108 1 = 107. Two more 6th order obstructions E_1, E_2 .

PROLONGATION II

k	$(J^{k+1}(S^2(T^*U)))$	$(J^k(Pr(U)))$	$(\ker \sigma^k)$	obstructions
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

- No obstruction on a projective structure before the order 5.
- $\bullet\,$ 5-jets. At least a 1D fiber, at most 83D image. First obstruction M .
- 6-jets. Dimension 112 3 = 109. The image of the 7-jets of metric structures can have dimension 108 1 = 107. Two more 6th order obstructions E_1, E_2 .
- 7-jets. The image has codimension 10. Two relations between the first derivatives of $E_1 = E_2 = 0$ and the second derivatives of the 5th order equation M = 0. The system is involutive.

DUNAJSKI (DAMTP, CAMBRIDGE)

LIOUVILLE'S PROBLEM

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• 5th order condition holds if c is a root of a quartic

$$864 c^4 - 792 c^3 - 3960 c^2 - 4750 c - 1875 = 0.$$

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• 5th order condition holds if c is a root of a quartic

$$864 c^4 - 792 c^3 - 3960 c^2 - 4750 c - 1875 = 0.$$

• The 6th order conditions are satisfied iff

$$1728\,c^3 - 8856\,c^2 - 2100\,c + 625 = 0,$$

 $7776\,c^5 + 19656\,c^4 - 21852\,c^3 - 42054\,c^2 - 28725\,c - 11125 = 0.$

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• 5th order condition holds if c is a root of a quartic

$$864 c^4 - 792 c^3 - 3960 c^2 - 4750 c - 1875 = 0.$$

• The 6th order conditions are satisfied iff

$$1728\,c^3 - 8856\,c^2 - 2100\,c + 625 = 0,$$

 $7776 c^5 + 19656 c^4 - 21852 c^3 - 42054 c^2 - 28725 c - 11125 = 0.$

• These three polynomials do not have a common root. We can make the 5th order obstruction vanish, but the two 6th order obstructions E_1, E_2 do not vanish.

• Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)

DUNAJSKI (DAMTP, CAMBRIDGE)

LIOUVILLE'S PROBLEM

Moscow, December 2011 12 / 13

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t).$ Dispersionless KP.

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t)$. Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t)$. Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 - One to one correspondence between equivalence classes of solutions to dKP and complex two-folds T with a three parameter family of rational curves with normal bundle $\mathcal{O}(2)$ an a section of $\kappa_T^{-1/4}$.

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t).$ Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 - One to one correspondence between equivalence classes of solutions to dKP and complex two-folds T with a three parameter family of rational curves with normal bundle $\mathcal{O}(2)$ an a section of $\kappa_T^{-1/4}$.
 - 2 Einstein-Weyl structure: $h = dy^2 4dxdt 4udt^2$, $\nu = -4u_xdt$.
- Cauchy problem (work in progress)

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t).$ Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 - One to one correspondence between equivalence classes of solutions to dKP and complex two-folds T with a three parameter family of rational curves with normal bundle $\mathcal{O}(2)$ an a section of $\kappa_T^{-1/4}$.
 - 2 Einstein-Weyl structure: $h = dy^2 4dxdt 4udt^2$, $\nu = -4u_xdt$.
- Cauchy problem (work in progress)
 - **(**) Surface $t = 0 \leftrightarrow$ two-parameter family of curves through a point in T.

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t).$ Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 - One to one correspondence between equivalence classes of solutions to dKP and complex two-folds T with a three parameter family of rational curves with normal bundle $\mathcal{O}(2)$ an a section of $\kappa_T^{-1/4}$.
 - 2 Einstein-Weyl structure: $h = dy^2 4dxdt 4udt^2$, $\nu = -4u_xdt$.
- Cauchy problem (work in progress)
 - **1** Surface $t = 0 \leftrightarrow$ two-parameter family of curves through a point in T.
 - Projective structure

$$L_0 = \partial_y + \lambda \partial_x - u_x(x, y, t = 0) \partial_\lambda, \qquad \frac{d^2x}{dy^2} = -\frac{\partial u(x, y, t = 0)}{\partial x}$$

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t).$ Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 - One to one correspondence between equivalence classes of solutions to dKP and complex two-folds T with a three parameter family of rational curves with normal bundle $\mathcal{O}(2)$ an a section of $\kappa_T^{-1/4}$.
 - 2 Einstein-Weyl structure: $h = dy^2 4dxdt 4udt^2$, $\nu = -4u_xdt$.
- Cauchy problem (work in progress)
 - **1** Surface $t = 0 \leftrightarrow$ two-parameter family of curves through a point in T.
 - Projective structure

$$L_0 = \partial_y + \lambda \partial_x - u_x(x, y, t = 0)\partial_\lambda, \qquad \frac{d^2x}{dy^2} = -\frac{\partial u(x, y, t = 0)}{\partial x}$$

O Dispersionless Lax pair = 1-parameter family of projective structures.

$$L_t = \partial_y + \lambda \partial_x - u_x(x, y, t) \partial_\lambda, \quad M = \partial_t + (\lambda^2 + u) \partial_x + (u_y - \lambda u_x) \partial_\lambda.$$

Characteristic initial value problem for $d \mathrm{KP}$

- Large class of systems (Zakharov, ..., Manakov–Santini–Grinevich.)
- $(u_t uu_x)_x = u_{yy}, \ u = u(x, y, t).$ Dispersionless KP.
- Twistor correspondence (MD, Mason, Tod):
 - One to one correspondence between equivalence classes of solutions to dKP and complex two-folds T with a three parameter family of rational curves with normal bundle $\mathcal{O}(2)$ an a section of $\kappa_T^{-1/4}$.
 - 2 Einstein-Weyl structure: $h = dy^2 4dxdt 4udt^2$, $\nu = -4u_xdt$.
- Cauchy problem (work in progress)
 - **1** Surface $t = 0 \leftrightarrow$ two-parameter family of curves through a point in T.
 - Projective structure

$$L_0 = \partial_y + \lambda \partial_x - u_x(x, y, t = 0)\partial_\lambda, \qquad \frac{d^2x}{dy^2} = -\frac{\partial u(x, y, t = 0)}{\partial x}$$

$$L_t = \partial_y + \lambda \partial_x - u_x(x, y, t) \partial_\lambda, \quad M = \partial_t + (\lambda^2 + u) \partial_x + (u_y - \lambda u_x) \partial_\lambda.$$

() Boundary cond: Asymptotically flat projective structure $u_{xxx} \approx 0$.

• This talk: Given a (projective) connection can you find a metric?

- This talk: Given a (projective) connection can you find a metric?
- General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:

- This talk: Given a (projective) connection can you find a metric?
- General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:
 - Can you find a Kähler metric in a given four-dimensional conformal class? MD, Tod. Math. Proc. Cam. Phil. Soc. (2010).

- This talk: Given a (projective) connection can you find a metric?
- General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:
 - Can you find a Kähler metric in a given four-dimensional conformal class? MD, Tod. Math. Proc. Cam. Phil. Soc. (2010).
 - Can you find Euclidean supersymmetries (and how many) in a given cosmological Einstein-Maxwell instanton space-time? MD, Hartnoll. CQG (2007), MD, Gutowski, Sabra, Tod. CQG (2011), JHEP (2011).

- This talk: Given a (projective) connection can you find a metric?
- General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:
 - Can you find a Kähler metric in a given four-dimensional conformal class? MD, Tod. Math. Proc. Cam. Phil. Soc. (2010).
 - Can you find Euclidean supersymmetries (and how many) in a given cosmological Einstein-Maxwell instanton space-time? MD, Hartnoll. CQG (2007), MD, Gutowski, Sabra, Tod. CQG (2011), JHEP (2011).
- Projective structures on characteristic initial data surfaces for dispersionless integrable systems.

- This talk: Given a (projective) connection can you find a metric?
- General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Applicable to other can you find type problems:
 - Can you find a Kähler metric in a given four-dimensional conformal class? MD, Tod. Math. Proc. Cam. Phil. Soc. (2010).
 - Can you find Euclidean supersymmetries (and how many) in a given cosmological Einstein-Maxwell instanton space-time? MD, Hartnoll. CQG (2007), MD, Gutowski, Sabra, Tod. CQG (2011), JHEP (2011).
- Projective structures on characteristic initial data surfaces for dispersionless integrable systems.

Thank You.