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1. Introduction and motivation

Elliptic functions have a single complex variable and two independent periods. They have been the
subject of much study since their discovery and have been extensively used to enumerate solutions of
non-linear wave equations. They occur in many physical applications; traditionally the arc-length of
the lemniscate and the dynamics of spherical pendulums, but also in cryptography and soliton solutions
to the KdV equation. Recent times have seen a revival of interest in the theory of their generalisations,
the Abelian functions, which have multiple independent periods, or more accurately, are periodic with
respect to a multi-dimensional period lattice. The lattice is usually defined in association with an
underlying algebraic curve. These functions also have a wide range of applications. They not only
give further solutions to the KdV equation, but also solutions to other integrable equations from the
KP-hierarchy. They have also been used to construct reductions of the Benney hierarchy, to model the
motion of a double pendulum and to describe geodesic motions in certain space-time metrics.

The most common definition of Abelian functions is as generalisations of the Weierstrass ℘-function.
This has allowed for investigation of their properties, with recent progress following both from new
theory, and advancement of efficient symbolic computation techniques. One key problem remaining
is the construction of bases for the vector spaces of the functions. The Riemann-Roch theorem can be
applied to determine the dimension of the spaces, while series expansions can be employed to check
linear independence. The unresolved issue is identifying enough suitable functions of a given type.
We describe various approaches to this problem and present a new method which can define infinite
sequences of classes of Abelian functions of a given type. Key to this is the definition of generalised
Hirota operators. The solution of the basis problem allows for properties of the Abelian functions to
be derived, such as differential equations and addition formulae, and for their use in applications.

Weierstrass elliptic functions

We recall the Weierstrass functions
which serve as a model for the generalisation.

Karl Weierstrass 1815-1897

An elliptic function is a meromorphic function
f (u), u ∈ C, which has two independent periods.

Weierstrass defined the elliptic ℘-function, which
had poles occurring only when u is a sum of pe-
riods. It satisfied the following, where g2, g3 are
constants dependent on the periods.

[℘′(u)]2 = 4℘(u)3 − g2℘(u)− g3 (1)
℘′′(u) = 6℘(u)2 − 1

2g2 (2)

The ℘-function and its derivative may be used to
parametrise an elliptic curve and the ℘-function
satisfies an addition formula representing the
group addition law for points on such a curve.

Weierstrass also defined the elliptic σ-function by

℘(u) = − d2

du2
ln[σ(u)] (3)

which has its own addition formula,

−σ(u + v)σ(u− v)

σ(u)2σ(v)2
= ℘(u)− ℘(v). (4)

2. Defining generalised elliptic functions

We define generalised elliptic functions or Abelian functions as those meromorphic functions peri-
odic with respect to the standard period lattice of an associated algebraic curve of genus g. All the
associated functions will be dependent on g variables, u = (u1, u2, ..., ug). There is a well defined
construction for (n, s)-curves, described for example in [6]. However, other curve models and con-
structions are a topic of investigation, for example in [1].

Given an (n, s)-curve we define the associated Kleinian σ-function as an entire function, satisfying
a quasi-periodicity condition, (periodic up to an exponential factor), with leading order terms in its
Maclaurin series given by a Schur-Weierstrass function. This function is given uniquely by a modified
Riemann θ-function. We define Kleinian ℘-functions as log derivatives of σ(u), in analogy to (3):

℘i1,i2,...,im(u) = − ∂

∂ui1

∂

∂ui2
...

∂

∂uim
lnσ(u),

where i1 ≤ ... ≤ im ∈ {1, ..., g}. We find
these are all Abelian, with poles of order m when
σ(u) = 0. If we impose this notation on the
elliptic case then we would denote ℘ ≡ ℘11,
℘′ ≡ ℘111, ℘

′′ ≡ ℘1111 etc.

This approach was initiated by the work of Klein
and Baker, with the general definitions pioneered
by Buchstaber, Enolskii and Leykin in [2].

3. The basis problem

Denote by Γ(m) the vector space of Abelian functions with poles of order at most m, defined upon
the Jacobian of the curve with poles occurring only on the Θ-divisor; the points where the θ and
σ-functions have their zeros and the Abelian functions their poles. We seek bases for these spaces.

The dimension of the space Γ(m) is mg by the
Riemann-Roch theorem for Abelian varieties. The
first step in constructing a basis is to include the
entries in the preceding basis for Γ(m − 1). Then
only functions with poles of order exactly m need
to be sought. The m-index ℘-functions are natural
candidates and are sufficient to solve the problem
in the elliptic case, as described in Table 1.

Space Dim Basis
Γ(0) = Γ(1) 1 1

Γ(2) 2 1, ℘
Γ(3) 3 1, ℘, ℘′

... ... ...
Γ(m) m 1, ℘, ℘′, ℘′′, . . . , ℘(m−2)

Table 1: Table of bases for the elliptic case.

However, if g > 1 then further classes of functions are required to complete the bases. When g = 2
we see that an additional function is required in Γ(3), with Ξ = ℘11℘22 − ℘2

12 usually taken to fill this
hole. While each term in Ξ has poles of order 4, these cancel to leave poles of order 3 overall.

Then, when considering subsequent spaces in the
genus 2 case, the ℘-functions and the derivatives
of Ξ are sufficient, as presented in Table 2. Here
∂i indicates differentiation with respect to ui and
{·} all functions of that form. In this case the lin-
ear independence of the functions may be checked
using a weight argument. These examples are ex-
ceptions as in general these sequences of spaces
will not be finitely generated by differentiation.

Space Dim Basis for Γ(m)\Γ(m− 1)
Γ(2) 4 1, ℘11, ℘12, ℘22
Γ(3) 9 ℘111, ℘112, ℘122, ℘222,Ξ
Γ(4) 16 ℘1111, . . . , ℘2222, ∂1Ξ, ∂2Ξ

... ... ...
Γ(m) m2 {℘i1...im}, {∂i1 . . . ∂im−2Ξ}

Table 2: Table of bases for the genus two case.

For example, in the hyperelliptic genus 3 case we can show that at least one new function is required
at each stage in addition to derivatives of the previous basis. This is because the basis weight range is
fixed with the maximal weight entry increasing withm by one more than the highest weight derivative.

Recently, the basis problem has been solved in several specific cases by defining new classes as alge-
braic combinations of ℘-functions chosen for poles cancelation. For example,

Bijklm = ℘ij℘klm + 1
3

(
℘jk℘ilm + ℘jl℘ikm + ℘jm℘ikl − 2℘kl℘ijm − 2℘km℘ijl − 2℘lm℘ijk

)
always belongs to Γ(3). In [4] such classes are presented in a systematic way and used to find new
addition formulae and differential equations. While such an approach can be useful in specific cases
and applications, it is not clear how it may be generalised and so we now take a different approach.

4. Generalised Hirota operators

Recall Hirota’s bilinear operator defined as Di = ∂/∂ui− ∂/∂vi. We define the m-index Q-functions

Qi1,i2,...,im(u) =
(−1)

2σ(u)2
Di1Di2...Dimσ(u)σ(v)

∣∣∣
v=u

, i1 ≤ ... ≤ in ∈ {1, . . . , g}, m even.

They were first introduced in generality in [5], with the m = 4 case first appearing in [3] and that in
turn generalising the original Q-function of Baker. Comparing the definitions we see that Qij = ℘ij.
In fact, the Q-functions are all Abelian with poles of order two and are sufficient to solve the basis
problem in for Γ(2). The Q-functions have motivated the following definitions.

Let u1,u2, . . . ,um ∈ Cg with uj = (u
j
1, u

j
2, . . . , u

j
g). Define generalised Hirota operators by

Hmi =

m∑
j=1

ζj−1 ∂

∂u
j
i

, where ζ is a primitive mth root of unity.

Then define n-index, mth orderR-functions by

Rmi1,i2,...,in(u) =
(−1)

mσ(u)m
Hmi1H

m
i2
...Hminσ(u1)σ(u2) . . . σ(um)

∣∣∣
u1=u2=···=u

,

where i1 ≤ ... ≤ in ∈ {1, . . . , g} and n has m as a factor. By making specific choices of m,n we find

Rmi1,i2,...,im(u) = ℘i1,i2,...,im(u) and R2
i1,i2,...,in

(u) = Qi1,i2,...,in(u).

So the ℘ and Q-functions are all subclasses of R-functions. We find that the mth order R-functions
are Abelian with poles of order m and so can be used in the basis for Γ(m). In the hyperelliptic genus
3 case, discussed above, we can now identify the maximal weight function in each basis Γ(m) as the
2m-indexR-functionRm2,2,...,2(u). Further structure of the general bases is now under investigation.

Computation with series expansions
To check linear independence we may use the
series expansions. The construction of these is
an important tool, [5], but the computations
involved can be large.

Computations may be performed exactly in a
symbolic package, but code must be written to
utilize simplifications in the theory. E.g:

• There are a set of Sato weights which render
the theory of Abelian functions homogeneous,
(see e.g. [5]). Taking this weight structure into
account can reduce many calculations.

•All ℘-functions have a definite parity in u
given by the number of their indices.

The expansions can also be employed, along with
the bases, to derive sets of differential equations
that generalise (1) and (2), as well as various
addition formulae that generalise (4). See for
example [3], [4], [5].
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