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Abstract

| introduce the general concept of nonlinear self-adjointness. It
embraces author’s previous notions of strict self-adjointness and
quasi self-adjointness. But the set of nonlinearly self-adjoint
equations is essentially wider and includes, in particular, all linear
equations. The construction of conservation laws demonstrates a
practical significance of the nonlinear self-adjointness. Namely,
conservation laws can be associated with symmetries for all
nonlinearly self-adjoint systems of differential equations. The
system can contain any number of equations. This approach
provides a new method for constructing conservation laws and
extends Noether's theorem from variational problems to arbitrary
systems of differential equations. The new theory is illustrated by
various applications.



Definitions and self-adjointness

System of m differential equations
Fa(x,u,u(l),...,u(s)):o, a=1,...,m. (1)
Adjoint equations

F;(x,u,v,u(l),v(l),...,u(s),v(s)) =0, a=1,....m, (2)

with se
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where L is the formal Lagrangian
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Definitions and self-adjointness

Definition
Egs. (1) are nonlinearly self-adjoint if the adjoint equations (2)
are satisfied for all solutions of Egs. (1) upon a substitution

Ua:¢a(x7u)’ a:17”'7m7 (5)

with

e(z,u) # 0.




Definitions and self-adjointness

e

The adjoint equation to the KdV equation

Up = Ugpr + ULy (6)
has the form
Vp = Uppy + UL (7)
It is clear that
v=1u

solves the adjoint equation for all solutions of the KdV equation
(6). The general substitution of the form (5) is given by

v=A; + Asu+ Az(z + tu) (8)



Explicit formula for conserved vectors

(e

Let the system of differential equations (1) be nonlinearly
self-adjoint. If Eqgs. (1) have a Lie point, contact, Lie-Béacklund or
nonlocal symmetry

0

due

- 0
X = §Z(x,u,u(1),...)a$i +n%(x, u, ug)y, - - .) (9)

then the conserved vector is

s oL oL
Cl=W [au Dj<au>+DDk<auq>...] (10)

a | 0L oL a | 0L
D; (W®) [au% Dy, (aum) +...| + DDy (W) [au%k_



Explicit formula for conserved vectors

where '
W = n® — g (11)

and L is the formal Lagrangian.

e

The method is applicable independently on the number of
equations in the system and the number of dependent variables.

.

The above Theorem, unlike the Noether theorem, does not require
additional restrictions such as the invariance condition or the
divergence condition.




Short pulse equation

Eews ——

Ultra-short light pulses in media with nonlinearities

1
Formal Lagrangian
L, 2
L= Ut = U = 5 Uty — UG | - (13)
Adjoint equation
Ly
Vgt = U + 5 U V- (14)

Eq. (12) is not nonlinearly self-adjoint with a substitution

v=(t,x,u) (15)



Short pulse equation

but it is nonlinearly self-adjoint with the differential substitution

v=up - g u?u,. (16)

Eq. (12) has three symmetries:

0 O xy—ul 29 00 a4y

X = — . X,= =
Y79t 27 oz ou ' Tox ot

The symmetries X7 and X5 lead to trivial conservation laws, but
X3 gives the nontrivial conservation law
L4

1
Dt( ) + D, (u Uty — UF — Vi 4u4ui) = 0. (18)



