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Elliptic Moutard transformations

The two-dimensional stationary Schrödinger equation:

− (uxx + uyy ) + V (x , y)u = 0 (1)

− (uxx + uyy ) + V (x , y)u + Eu = 0 (2)

Examples:
1) V (x , y) = 0: harmonic functions u(x , y).
2) V (x , y) = −k2 = −E :

u(x , y) = sin(ax + by + c), a2 + b2 = k2

gives a “basis” of solutions of (1).
Question: How can one construct potentials V (x , y) with some
“sufficiently big” set of solutions of (1) or (2) in “explicit form”?
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Elliptic Moutard transformations

Known examples:
0) Harmonic oscillator V = a(x2 + y2) and a few other textbook
examples.
1) Quasi-exactly solvable V (Turbiner A.V., Gonzalez-Lopez A.,
Kamran N., Olver P. . . . ) Solutions are constructible for some
levels E of the discrete spectrum.

2) D-integrable potentials V =
m∑

k=1

(αk , αk )Ak

((αk , ~x) + ck )2

(Berest Yu.Yu.,
Chalykh O., Veselov A. P. . . . ).
Problem: singularities.
3) Miltidimensional “finite-gap” potentials (Dubrovin B. A.,
Krichever I.M., Novikov S.P., Veselov A.P., Buchstaber V.M.,
Enolskii V.Z. . . . ) V and u are given in terms of the
theta-function or the Kleinian hyperelliptic functions.
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Elliptic Moutard transformations

Suppose we have 2 solutions u = ω, u = φ of stationary
Schrödinger equation:

− (uxx + uyy ) + V (x , y)u = 0. (3)

Then one can find a solution u = θ for (3) with another potential

V1 =V − 2∆ lnω = −V +
2(ω2

x + ω2
y )

ω2 , (4)

as a solution of the following system: (ωθ)x = −ω2
(

φ
ω

)
y
,

(ωθ)y = ω2
(

φ
ω

)
x
,

(5)
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Important examples (I.Taimanov, S.Ts., 2009)

Examples:

V12 = −
5120(1 + 8x + 2y + 17x2 + 17y2)

(160 + 4x2 + 4y2 + 16x3 + 4x2y + 16xy2 + 4y3 + 17(x2 + y2)2)2
, (6)

u1 =
x + 2x2 + xy − 2y2

160 + 4x2 + 4y2 + 16x3 + 4x2y + 16xy2 + 4y3 + 17(x2 + y2)2
,

u2 =
2x + 2y + 3x2 + 10xy − 3y2

160 + 4x2 + 4y2 + 16x3 + 4x2y + 16xy2 + 4y3 + 17(x2 + y2)2
.

(7)

Theorem
V12 is smooth and decays as 1/r6 for r →∞.
u1 and u2 are smooth and decay as 1/r2 for r →∞
so they lie in the kernel of L = −∆ + u : L2(R2) → L2(R2).
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Nonlinear superposition principles

V0 V12

V2

V1 θω

φ ψ = −ωθ
φ
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The algebraic superposition formula (L.Bianchi)

θ′ = −φ+
ω1ω2

λ
(θ1 − θ2),

where λ = ω1ω
′
1 = −ω2ω

′
2.

V0 V12

V2

V1 θω

φ ψ = −ωθ
φ
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V2 V12
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Where factorization is hidden???

Example: L = D2
x − D2

y − 2
x2

Laplace transformation: L P−→ L1,
P = Dx − Dy ,
L1 = D2

x − D2
y + 2

x (Dx + Dy )− 2
x2

L1 = (Dx + Dy )(Dx − Dy + 2
x ).

In fact L and L1 are isomorphic: L1
Q−→ L,

Q = (Dx + Dy )− 2
x2

Another interpretation of this isomorphism:
L1 · P = Q1 · L,
L ·Q = P1 · L1,
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Attacking the multidimensional case:
n-dim solvable Schrödinger equations and
Huygens’ principle

n-dimensional stationary Schrödinger equation:

L = −(D2
x1

+ . . .+ D2
xn) + V (x1, . . . , xn)u + Eu = 0 (8)

“D-integrable potentials” (Berest Yu.Yu., Chalykh O.,
Veselov A. P. . . . ) for arbitrary E :

V =
m∑

k=1

(αk , αk )Ak

((αk , ~x) + ck )2 .

Problem: singularities.

Main Ansatz: L ·M = M · L0,

L0 = −(D2
x1

+ . . .+ D2
xn), M is a LPDO.
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Factorization of linear PDEs and nonlinear PDEs

uxy = F (x , y ,u,ux ,uy ), u = u(x , y). (9)

Idea: linearization.
u(x , y) → u(x , y) + εv(x , y) =⇒

vxy = Avx + Bvy + Cv (10)

Theorem
(Anderson, Juras, Sokolov, 1995) A second order, scalar,
hyperbolic partial differential equation (9) is Darboux integrable
if and only if both Laplace sequences for (10) are finite (⇐⇒ it
is factorizable in a generalized sense).
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Problems for LPDEs

Blumberg-Landau (around 1910):

if
P = Dx + xDy , Q = Dx + 1,

R = D2
x + xDxDy + Dx + (2 + x)Dy ,

then L = Q ·Q · P = R ·Q.
R is absolutely irreducible, i.e. one can not factor it into product
of first-order operators with coefficients in any extension of
Q(x , y).
So Jordan-Hölder-Landau theorem does NOT hold for the
“naive” definition of factorization as decomposition into a
product of lower-order operators in the ring Q(x , y)[Dx ,Dy ].
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A challenge

Lu = (DxDy + xDxDz − Dz)u = 0.

It has a complete solution (U. Dini, 1902):

u =

∫ (
v dx + (Dy + xDz)v dz

)
+ θ(y),

where v =
∫
φ(x , xy − z) dx + ψ(y , z).

Technology: “Dini transformations”
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Dxu1 = u1 + 2u2 + u3,
Dyu2 = −6u1 + u2 + 2u3,
(Dx + Dy )u3 = 12u1 + 6u2 + u3.

It has the complete explicit solution (S.Ts., ISSAC’2005):
u1 = 2eyG(x) + ex(3F (y) + F ′(y)) + exp x+y

2 H(x − y),

u2 = eyG′(x) + 2exF ′(y)− 2u1,

u3 = Dxu1 + 3u1 − 2(eyG′(x) + 2exF ′(y)),

where F (y), G(x) and H(x − y) are three arbitrary functions of
one variable each.
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A bit of history

Euler, Laplace, Moutard, Darboux, . . . :

uxy + a(x , y)ux + b(x , y)uy + c(x , y)u = 0.

Lagrange: hyperbolic equations

a11uxx + a12uxy + a22uyy + a1ux + a2uy + a0u = 0,

aij = aij(x , y), a2
12 − 4a11a22 > 0.
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A paragon theory: factorization of LODEs

(I) Solutions ⇐⇒ factorizations:

L = L1 · (D− u(x)) ⇐⇒ u = y ′

y , y(x) is a solution of Ly = 0.

L = (D − u1(x)) · · · (D − un(x)) ⇐⇒ we know all solutions
of L.

(II) Jordan-Hölder theorem (Landau theorem) for different
factorizations of a given operator:
L = L1 · · ·Lk = L1 · · ·Lr =⇒ k = r .
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Approach 1: Rings/modules (S.Ts., 1998)

Goals:
1) to define a notion of factorization with “good” properties:
1a) ∀ LPDO L ≈ L1L2 · · ·Lk with FINITE k .
In particular Dx should be irreducible . . .
1b) Preserving the property proved by Landau E. (1902) for
LODE: all possible factorizations of a given operator L have the
same number of factors in different expansions
L = L1 · · ·Lk = L1 · · ·Lr into irreducible factors and the factors
Ls, Lp are pairwise “similar".

2) Existence of large classes of solutions should be related to
factorization.

3) Algorithms?
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Divisor ideals (S.Ts., 1998)

Hint 1: if we have L = L1L2 · · ·Lk ⇐⇒ we have a chain of left
principal ideals
|L〉 ⊂ |L2L3 · · ·Lk 〉 ⊂ |L3 · · ·Lk 〉 ⊂ . . . ⊂ |Lk 〉 ⊂ |1〉.

Hint 2: We shall drop the word “principal” (Blumberg’s
example).

Hint 3: But we shall take not all left ideals!
Example: |Dx〉 ⊂ |Dx ,Dm

y 〉 ⊂ |Dx ,Dm−1
y 〉 ⊂ . . . |Dx ,Dy 〉 ⊂ |1〉.

(the same even for multivariate polynomials!)
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Divisor ideals (cont.)

1998: one can define special left ideals of the ring of LPDO,
such that:
1) chains will be finite and for a given L they will have the same
length:
if |L〉 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ |1〉, |L〉 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jm ⊂ |1〉
then k = m and Is are similar to Jp.
2) Irreducible LODO will be still irreducible as LPDEs.
3) for dim = 2, ord = 2 LODO, factorizable ⇐⇒ integrable
(with Laplace transformations).
4) Algebraically, the problem is reduced from Q(x , y)[Dx ,Dy ] to
Q(x , y ,Dx)[Dy ] and/or Q(x , y ,Dy )[Dx ] (Ore quotients).

Problems:

1) No idea how to generalize to systems of LPDEs.
2) Technical, not intuitive.
3) No algorithms known.
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Conjectures

I If a LPDO is factorizable in this generalized sense, then its
principal symbol is factorizable.

I If a LPDO of order n is solvable then its symbol splits into n
linear factors.
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Approach 2: Abelian categories (S.Ts., 2003)

Abelian category of L.O.D.O.:

objects are operators L = a0(x)Dn + a1(x)Dn−1 + . . .+ an(x),

morphisms are mappings of solutions with auxiliary operators:
P : L → M iff for every u such that Lu = 0, v = Pu gives a
solution of M: Mv = 0.

Algebraically: M · P = N · L.
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Abelian category S of systems of L.P.D.E.:

S :


L11u1 + . . .+ L1sus = 0,
· · ·
Lk1u1 + . . .+ Lksus = 0,

Morphism P : S → Q,

P :


v1 = P11u1 + . . .+ P1sus,
· · ·
vm = Pm1u1 + . . .+ Pmsus,

Theorem
Any abelian category with finite ascending chains satisfies the
Jordan-Hölder property.

Problem: chains are infinite....
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The solution: Serre-Grothendieck
factorcategory!

For a given (say, determined) system of L.P.D.E. take the
subcategory Sn−2 of (overdetermined) systems with solution
space parameterized by functions of at most n − 2 variables.
Then in the factorcategory S/Sn−2 ascending chains are finite!
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Another factorization ideology: work in Ore skew fields
of pseudodifferential operators

L = D2
x − D2

y − 2
x2 = (Dx − A)(Dx + A)

where A ∈ Q(x ,Dy ), so L factors in Q(x ,Dy )[Dx ] !!!

so transition from Q(x)[Dx ,Dy ] to Q(x ,Dy )[Dx ]
(or Q(x ,Dx)[Dy ]) is useful.

Latest result (2011): Dini transformations (in R3) are Laplace
transformations in Q(x , y , z,Dz)[Dx ,Dy ] !
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